Skip to main content
Log in

Protecting Two-qutrit Entanglement in Four Noise Channel Via Weak Measurement and Measurement Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The protection of quantum entanglement has always been the focus of researchers. We adopt the scheme of combining weak measurement and measurement reversal to explore the protection effect of two-qutrit system in four noise channels, i.e., the amplitude damping channel, the phase damping channel, the bit flip channel and the depolarizing channel. For the given qutrits state with \(\alpha =\beta =\gamma =\frac {1}{\sqrt {3}}\), it is found that the protection scheme can help to protect entanglement in the amplitude damping channel, while for the state with \(\alpha =\beta =\frac {1}{\sqrt {2}},\gamma =0\), the protection scheme plays a protective role in the amplitude damping channel and the depolarizing channel. We also calculate and discuss how the negativity and the probability of success behave when adjusting the weak measurement or measurement reversal strength. In different noise channels, the entanglement can be kept as much as possible by choosing the appropriate weak measurement parameters. It provides a strong basis for the system to maintain maximum entanglement in different noise channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Horodedecki, R., Horodedecki, P., Horodedecki, M., Horodedecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zyczkowski, K., Horodedecki, P., Horodedecki, M., Horodedecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 86, 012101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  5. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2007)

    Article  Google Scholar 

  6. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Environmental-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  7. Eberly, J.H., Yu, T.: The end of entanglement. Science 316, 555 (2007)

    Article  Google Scholar 

  8. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  9. Aharonov, Y., Albert, D.Z., Casher, A., Vaidman, L.: Surprising quantum effects. Phys. Lett. A 124, 199 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  11. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  12. Sun, Q.Q., Al-Amri, Q.M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  13. Tan, Q.Y., Wang, L., Li, J.X., Tang, J.W., Wang, X.W.: Amplitude damping decoherence suppression of two-qubit entangled states by weak measurements. Int. J. Theor. Phys. 52, 612–619 (2013)

    Article  Google Scholar 

  14. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  15. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117–120 (2012)

    Article  ADS  Google Scholar 

  16. Man, Z.X., Xia, Y.J.: Manipulating entanglement of two qubits in a commom environment by means of weak measurement and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  17. Man, Z.X., Xia, Y.J.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  18. Xiao, X.: Protecting qubit-qutrit entanglement from amplitude damping decoherence via weak measurement and reversal. Phys. Scr. 89, 065102 (2014)

    Article  ADS  Google Scholar 

  19. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  20. Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process 12, 3421 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, W.J., He, Z., Wang, Q.P.: Protecting distribution entanglement for two-qubit state using weak measurement and reversal. Int. J. Theor. Phys. 56, 2813–2824 (2017)

    Article  MathSciNet  Google Scholar 

  22. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 62005199) and the Natural Science Foundation of Shandong Province (Grant No. ZR2020KF017, ZR2020QA072, ZR2020LLZ001, ZR2019LL006, 2019GGX101073, ZR2018LA014). All the authors participated in the paper, and the main content they were responsible for was somewhat focused. All authors have read and agreed to the published version of the manuscript.

Funding

the Natural Science Foundation of China (Grant No. 62005199) and the Natural Science Foundation of Shandong Province (Grant No. ZR2020KF017, ZR2020QA072, ZR2020LLZ001, ZR2019LL006, 2019GGX101073, ZR2018LA014).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, M.J.W., Y.J.X., Y.D.L., Y.Y., L.Z.C., X.L., X.L.W., Q.W.Z. and J.Q.Z.; software, M.J.W. and J.Q.Z.; writing-original draft preparation, M.J.W. and J.Q.Z.; writing-review and editing, Y.J.X., Y.D.L., Y.Y. and L.Z.C, X.L., X.L.W.,Q.W.Z..

Corresponding author

Correspondence to JiaQiang Zhao.

Ethics declarations

We solemnly declare that the submitted manuscript Protecting two-qutrit entanglement in four noise channel via weak measurement and measurement reversal is the result of my work and research. The research results of this manuscript do not contain the contents of any published or unpublished works created by others, except those already cited in the text. Other individuals and groups that have contributed to the research work involved in this manuscript have been clearly identified in the text. We undertake the legal responsibility for the statement of originality of this manuscript.

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xia, Y., Li, Y. et al. Protecting Two-qutrit Entanglement in Four Noise Channel Via Weak Measurement and Measurement Reversal. Int J Theor Phys 60, 3375–3386 (2021). https://doi.org/10.1007/s10773-021-04809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04809-w

Keywords

Navigation