Skip to main content
Log in

Fault-Tolerant \({H_\infty }\) Control for T–S Fuzzy Persistent Dwell-time Switched Singularly Perturbed Systems with Time-Varying Delays

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work focuses on the problem of fault-tolerant control for nonlinear persistent dwell-time (PDT) switched singularly perturbed systems (SPSs) with time-varying delays. The persistent dwell-time switching mechanism is employed to describe the fast and slow switching among several subsystems in the investigated systems alternatively. In order to reduce the influence of actuator faults on system stability and performance, a fault-tolerant feedback controller is designed. Based on Lyapunov function approach and Takagi–Sugeno fuzzy technique, some sufficient conditions are obtained, which can ensure the exponentially stable and \({H_\infty }\) performance of the closed-loop system. In addition, the fault-tolerant slow state variables feedback (SSVF) controller is obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example, an inverted pendulum model, and a tunnel diode circuit model are given to show the practicability and usefulness of the developed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang, N., Nahid-Mobarakeh, B., Gao, F., Paire, D., Miraoui, A., Liu, W.: Modeling and stability analysis of multi-time scale DC microgrid. Electr. Power Syst. Res. 140, 906–916 (2016)

    Google Scholar 

  2. Kim, J.K., Sontag, E.D.: Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation. PLoS Comput. Biol. 13(6), e1005571 (2017)

    Google Scholar 

  3. Yu, X., Chen, L.: Observer-based two-time scale robust control of free-flying flexible-joint space manipulators with external disturbances. Robotica 35(11), 2201 (2017)

    Google Scholar 

  4. Phillips, R.G.: Reduced order modelling and control of two-time-scale discrete systems. Int. J. Control 31(4), 765–780 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Kando, H., Iwazumt, T.: Multi-rate digital control design of an optimal regulator via singular perturbation theory. Int. J. Control 44(6), 1555–1578 (1986)

    MATH  Google Scholar 

  6. Li, T.H.S., Chiou, J.S., Kung, F.C.: Stability bounds of singularly perturbed discrete systems. IEEE Trans. Autom. Control 44(10), 1934–1938 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Wan, X., Wang, Z., Wu, M., Liu, X.: \( H_ {\infty } \) state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 415–426 (2018)

    MathSciNet  Google Scholar 

  8. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Song, J., Niu, Y.: Dynamic event-triggered sliding mode control: dealing with slow sampling singularly perturbed systems. IEEE Trans. Circ. Syst. II 67(6), 1079–1083 (2020)

    Google Scholar 

  10. Yang, W., Wang, Y.W., Wen, C., Daafouz, J.: Exponential stability of singularly perturbed switched systems with all modes being unstable. Automatica 113, 108800 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Wang, Y.W., Yang, W., Liu, X.K., Chen, W.H.: Dissipativity of singularly perturbed Lur’e systems. IEEE Trans. Circuits Syst. II 66(9), 1532–1536 (2018)

    Google Scholar 

  12. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. Syst. 1, 116–132 (1985)

    MATH  Google Scholar 

  13. Castro, J.R., Castillo, O., Sanchez, M.A., Mendoza, O., RodrA-guez-Diaz, A., Melin, P.: Method for higher order polynomial sugeno fuzzy inference systems. Inf. Sci. 351, 76–89 (2016)

    MATH  Google Scholar 

  14. Sanchez, M.A., Castro, J.R., Ocegueda-Miramontes, V., Cervantes, L.: Hybrid learning for general type-2 TSK fuzzy logic systems. Algorithms 10(3), 99 (2017)

    Google Scholar 

  15. Chen, J., Li, J., Yang, N.: Globally repetitive learning consensus control of unknown nonlinear multi-agent systems with uncertain time-varying parameters. Appl. Math. Model. 89, 348–362 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Chen, J., Li, J., Yuan, X.: Distributed fuzzy adaptive consensus for high-order multi-agent systems with an imprecise communication topology structure. Fuzzy Set. Syst. 402, 1–15 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Dong, J., Yang, G.H.: \(H_{\infty }\) control design for fuzzy discrete-time singularly perturbed systems via slow state variables feedback: an LMI-based approach. Inf. Sci. 179(17), 3041–3058 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Li, F., Xu, S., Shen, H.: Fuzzy-Model-Based \( H_ {\infty } \) control for markov jump nonlinear slow sampling singularly perturbed systems with partial information. IEEE Trans. Fuzzy Syst. 27(10), 1952–1962 (2019)

    Google Scholar 

  19. Cheng, J., Huang, W., Lam, H.K., Cao, J., Zhang, Y.: Fuzzy-model-based control for singularly perturbed systems with nonhomogeneous Markov switching: a dropout compensation strategy. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3041588

    Article  Google Scholar 

  20. Li, H.Y., Wang, Y.Y., Yao, D.Y., Lu, R.Q.: A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Cheng, J., Wang, Y., Park, J.H., Cao, J., Shi, K.: Static output feedback quantized control for fuzzy Markovian switching singularly perturbed systems with deception attacks. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3052104

    Article  Google Scholar 

  22. Zheng, Q., Guo, X., Zhang, H.: Mixed \( H_\infty \) and passive filtering for a class of nonlinear switched systems with unstable subsystems. Int. J. Fuzzy Syst. 20(3), 769–781 (2018)

    MathSciNet  Google Scholar 

  23. El Younsi, L., Benzaouia, A., El Hajjaji, A.: Decentralized control design for switching fuzzy large-scale T-S systems by switched Lyapunov function with \( H_\infty \) performance. Int. J. Fuzzy Syst. 21(4), 1104–1116 (2019)

    MathSciNet  Google Scholar 

  24. Zhang, W., Wang, T., Tong, S.: Event-triggered control for networked switched fuzzy time-delay systems with saturated inputs. Int. J. Fuzzy Syst. 21(5), 1455–1466 (2019)

    MathSciNet  Google Scholar 

  25. Ge, C., Yang, L., Zhao, Z., Zhang, J., Liu, Y.: Stochastic switched sampled-data control for uncertain fuzzy systems with packet dropout. Int. J. Fuzzy Syst. 23(1), 145–157 (2021)

    Google Scholar 

  26. Cheng, J., Huang, W., Park, J.H., Cao, J.: A hierarchical structure approach to finite-time filter design for fuzzy Markov switching systems with deception attacks. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3049476

    Article  Google Scholar 

  27. Jiang, X., Tian, S., Zhang, W.: Weighted \( H _\infty \) performance analysis of nonlinear stochastic switched systems: a mode-dependent average dwell time method. Int. J. Fuzzy Syst. 22(5), 1454–1467 (2020)

    Google Scholar 

  28. Zhang, L., Shi, P.: \(l_{2}-l_{\infty }\) model reduction for switched LPV systems with average dwell time. IEEE Trans. Autom. Control 53(10), 2443–2448 (2008)

    MATH  Google Scholar 

  29. Ma, R., Fu, J., Chai, T.: Dwell-time-based observer design for unknown input switched linear systems without requiring strong detectability of subsystems. IEEE Trans. Autom. Control 62(8), 4215–4221 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Li, Y., Zhang, H., Zheng, D., Wang, Y.: Asynchronous \(H_{\infty }\) control of discrete-time switched T-S fuzzy systems with dwell time. Int. J. Fuzzy Syst. 20(4), 1098–1114 (2018)

    MathSciNet  Google Scholar 

  31. Fei, Z., Shi, S., Wang, Z., Wu, L.: Quasi-time-dependent output control for discrete-time switched system with mode-dependent average dwell time. IEEE Trans. Autom. Control 63(8), 2647–2653 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Hespanha, J.: Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans. Autom. Control 49(4), 470–482 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, L., Zhuang, S., Shi, P.: Non-weighted quasi-time-dependent \(H_{\infty }\) filtering for switched linear systems with persistent dwell-time. Automatica 54(5), 201–209 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, X.Q., Ye, D., Zhong, G.X.: Passivity and passification of switched systems with the persistent dwell time switching. Nonlinear Anal. Hybrid Syst. 34, 18–29 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Shen, H., Huang, Z., Yang, X., Wang, Z.: Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts. Nonlinear Dyn. 93(4), 2249–2262 (2018)

    MATH  Google Scholar 

  36. Su, H., Zhang, W.: Observer-Based adaptive fuzzy fault-tolerant control for nonlinear systems using small-gain approach. Int. J. Fuzzy Syst. 21(3), 685–699 (2019)

    MathSciNet  Google Scholar 

  37. Zhang, M., Shi, P., Shen, C., Wu, Z.G.: Static output feedback control of switched nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 28(8), 1600–1609 (2019)

    Google Scholar 

  38. Li, X., Ma, D., Xie, X., Sun, Q.: Fault-Tolerant synchronization of chaotic systems with fuzzy sampled data controller based on adaptive event-triggered scheme. Int. J. Fuzzy Syst. 22(3), 917–929 (2020)

    Google Scholar 

  39. Ye, D., Li, X.: State feedback controller design for general polynomial-fuzzy-model-based systems with time-varying delay. Int. J. Fuzzy Syst. 21(2), 583–591 (2019)

    MathSciNet  Google Scholar 

  40. Yang, Z., Zhang, H.: Stability and \(L_1\)-gain analysis for switched positive T-S fuzzy systems with time-varying delay. Int. J. Fuzzy Syst. 20(2), 380–389 (2018)

    MathSciNet  Google Scholar 

  41. Feng, Z., Yang, Y., Jiang, Z., Zhao, Y., Yuan, X.: Admissibility and admissibilization of singular polynomial fuzzy systems with time-varying delay. Int. J. Fuzzy Syst. 23(1), 81–93 (2021)

    Google Scholar 

  42. Lizarraga, I., Etxebarria, V.: Combined PD-\(H_{\infty }\) approach to control of flexible link manipulators using only directly measurable variables. Cybern. Syst. 34(1), 19–31 (2003)

    MATH  Google Scholar 

  43. Rejeb, J.B., Morarescu, I.C., Girard, A., Daafouz, J.: Stability analysis of a general class of singularly perturbed linear hybrid systems. Automatica 90, 98–108 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Q., Zhou, L., Ma, X., Yang, C.: Disturbance rejection of singularly perturbed switched systems subject to actuator saturation. Int. J. Robust Nonlinear Control 28(6), 2231–2248 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Zakj, S.H., Maccarley, C.A.: State-feedback control of non-linear systems. Int. J. Control 43(5), 1497–1514 (1986)

    MATH  Google Scholar 

  46. Li, F., Zheng, W.X., Xu, S.: HMM-Based fuzzy control for nonlinear Markov jump singularly perturbed systems with general transition and mode detection information. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3050352

    Article  Google Scholar 

  47. Lu, Q., Shi, P., Lam, H.K., Zhao, Y.: Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Trans. Fuzzy syst. 23(6), 2317–2328 (2015)

    Google Scholar 

  48. Li, H., Wu, C., Shi, P., Gao, Y.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. 45(11), 2378–2389 (2014)

    Google Scholar 

  49. Sanchez, M.A., Castillo, O., Castro, J.R.: Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)

    Google Scholar 

  50. Wang, Y., Ahn, C.K., Yan, H., Xie, S.: Fuzzy control and filtering for nonlinear singularly perturbed Markov jump systems. IEEE Trans. Cybern. 51(1), 297–308 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant 61573013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, J. & Qi, X. Fault-Tolerant \({H_\infty }\) Control for T–S Fuzzy Persistent Dwell-time Switched Singularly Perturbed Systems with Time-Varying Delays. Int. J. Fuzzy Syst. 24, 247–264 (2022). https://doi.org/10.1007/s40815-021-01133-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01133-7

Keywords

Navigation