Skip to main content
Log in

Gamma-linolenic Acid from Fifty-seven Ribes Species and Cultivars

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

γ-linolenic acid (GLA, 18:3n-6) is a bioactive fatty acid (FA) that exerts several healthy actions; however, its occurrence is restricted to a few oils. The goal of this study was to detect GLA-rich Ribes species and cultivars (cv), and to achieve this the seeds of 7 Ribes taxa and 50 Ribes cv were surveyed for FA profiles. The highest GLA percentages were found in R. nigrum cv 'Plotnokistnaya', 'Volshebnica', 'Atlant' and 'Nara' (22.6, 22.1, 20.9, and 20.0% of total FA, respectively) and also in R. komarovii (19.6%) and R. nigrum var. sibiricum (18.3%). Stearidonic acid (SDA, 18:4n-3) had the highest values in both R. rubrum 'Konstantinovskaya' and R. niveum 'Smolyaninovskaya' (4.8%). GLA content ranged from 0.4 in some R. rubrum cv and R. niveum 'Smolyaninovskaya' to 3.5 g/100 g seeds in R. nigrum 'Plotnokistnaya'. Principal component analysis (PCA) was performed using PUFA profiles, which allowed grouping Ribes sections as well as black currant cv derived from different pedigree within the section Coreosma. All taxa and cv checked here are valuable by-product sources, given the high GLA percentages contained in their seed oils. Such cv could be used for healthy oils production, as well as for breeding to obtain new cv with improved GLA concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data are available upon request.

Code Availability

Not applicable.

Abbreviations

ALA:

α-Linolenic acid

ARA:

Arachidonic acid

BC:

Black currant

CV:

Cultivar

D6D:

Δ6-Desaturase

DHGLA:

Dihomo-γ-linolenic acid

FA:

Fatty acid

FAME:

Fatty acid methyl esters

GLA:

γ-Linolenic acid

LA:

Linoleic acid

MUFA:

Monounsaturated fatty acid

OA:

Oleic acid

PA:

Palmitic acid

PC:

Principal component

PCA:

Principal component analysis

PUFA:

Polyunsaturated fatty acid

SDA:

Stearidonic acid

SFA:

Saturated fatty acid

References

  1. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. https://doi.org/10.1002/biot.200600012

    Article  CAS  PubMed  Google Scholar 

  2. Sergeant S, Rahbar E, Chilton FH (2016) Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol 785:77–86. https://doi.org/10.1016/j.ejphar.2016.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N (2014) Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv Exp Med Biol 824:61–81. https://doi.org/10.1007/978-3-319-7320-0_7

    Article  CAS  PubMed  Google Scholar 

  4. Innes JK, Calder PC (2018) Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fat Acids 132:41–48. https://doi.org/10.1016/j.plefa.2018.03.004

    Article  CAS  Google Scholar 

  5. Alonso-Esteban JI, González-Fernández MJ, Fabrikov D, Torija-Isasa E, Sánchez-Mata MDC, Guil-Guerrero JL (2020) Hemp (Cannabis sativa L.) Varieties: Fatty Acid Profiles and Upgrading of γ-Linolenic Acid-Containing Hemp Seed Oils. Eur J Lipid Sci Tech 122:1900445. https://doi.org/10.1002/ejlt.201900445

    Article  CAS  Google Scholar 

  6. Ruiz del Castillo ML, Dobson G, Brennan R, Gordon S (2002) Genotypic variation in fatty acid content of blackcurrant seeds. J Agric Food Chem 50:332–335. https://doi.org/10.1021/jf010899j

    Article  CAS  PubMed  Google Scholar 

  7. Lyashenko S, González-Fernández MJ, Gómez-Mercado FY, Yunusova S, Denisenko O, Guil-Guerrero JL (2019) Ribes taxa: a promising source of γ-linolenic acid-rich functional oils. Food Chem 301:125309. https://doi.org/10.1016/j.foodchem.2019.125309

    Article  CAS  PubMed  Google Scholar 

  8. Bakowska-Barczak AM, Schieber A, Kolodziejczyk P (2009) Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J Agric Food Chem 57:11528–11536. https://doi.org/10.1021/jf902161k

    Article  CAS  PubMed  Google Scholar 

  9. Lyashenko S, Yunusova S, López-Ruiz R, Vasfilova E, Kiseleva O, Chimitov D, Bahanova M, Bojko N, Guil-Guerrero JL (2021) Lipid fractions, fatty acid profiles, and bioactive compounds of Lithospermum officinale L. seeds. J Am Oil Chem Soc 98:425–437. https://doi.org/10.1002/aocs.12466

    Article  CAS  Google Scholar 

  10. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Hum Nutr 65:299–308. https://doi.org/10.1007/s11130-010-0177-1

    Article  CAS  PubMed  Google Scholar 

  11. Zdunić G, Šavikin K, Pljevljakušić D, Djordjević B (2016) Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars. Academic Press, Cambridge, pp 101–126. https://doi.org/10.1016/B978-0-12-408117-8.00005-2

    Chapter  Google Scholar 

  12. Brennan RM (2008) Currants and gooseberries. In: Hancock JF (ed) Temperate fruit crop breeding. Springer, Dordrecht, pp 177–196. https://doi.org/10.1007/978-1-4020-6907-9_6

    Chapter  Google Scholar 

  13. Pluta S (2012) New challenges in the Ribes breeding and production. Acta Hortic 946:27–35. https://doi.org/10.17660/actahortic.2012.946.1

    Article  Google Scholar 

  14. State Register of breeding achievements approved for use in the Russian Federation (in Russian) https://reestr.gossortrf.ru/. Accessed 23 March 2021

  15. Pluta S, Żurawicz E (2009) The last twenty years of blackcurrant (Ribes nigrum L.) breeding work in Poland. Acta Hortic 814:309–314. https://doi.org/10.17660/actahortic.2009.814.48

    Article  Google Scholar 

  16. Basegmez HIO, Povilaitis D, Kitrytė V, Kraujalienė V, Šulniūtė V, Alasalvar C, Venskutonis PR (2017) Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J Supercrit Fluids 124:10–19. https://doi.org/10.1016/j.supflu.2017.01.003

    Article  CAS  Google Scholar 

  17. Schultheis LM, Donoghue MJ (2004) Molecular phylogeny and biogeography of Ribes (Grossulariaceae), with an emphasis on gooseberries (subg. Grossularia). Syst Bot 29:77–96. https://doi.org/10.1600/036364404772974239

    Article  Google Scholar 

  18. Bada JC, León-Camacho M, Copovi P, Alonso L (2014) Characterization of berry and currant seed oils from Asturias, Spain. Int J Food Prop 17:77–85. https://doi.org/10.1080/10942912.2011.614369

    Article  CAS  Google Scholar 

  19. Goffman FD, Galletti S (2001) Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several Ribes species. J Agric Food Chem 49:349–354. https://doi.org/10.1021/jf0006729

    Article  CAS  PubMed  Google Scholar 

  20. Lanham PG, Brennan RM, Hackett C, McNicol RJ (1995) RAPD fingerprinting of blackcurrant (Ribes nigrum L.) cultivars. Theor Appl Genet 90:166–172. https://doi.org/10.1007/BF00222198

    Article  CAS  PubMed  Google Scholar 

  21. Vuorinen AL, Kalpio M, Linderborg KM, Hoppula KB, Karhu ST, Yang B, Kallio HP (2016) Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition. Food Chem 196:976–987. https://doi.org/10.1016/j.foodchem.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Piskernik S, Vidrih R, Demšar L, Koron D, Rogeli M, Žontar TP (2018) Fatty acid profiles of seeds from different Ribes species. LWT 98:424–427. https://doi.org/10.1016/j.lwt.2018.09.011

    Article  CAS  Google Scholar 

  23. Strautina S, Kampuss K (2002) Research of Latvian Ribes genetic resources. Acta Hortic 585:171–176. https://doi.org/10.17660/ActaHortic.2002.585.26

    Article  Google Scholar 

  24. Kalinina IP, Nazaryuk NI (2009) Seyanets Golubki—a valuable initial form in black currant breeding. Sadovodstvo i Vinogradarstvo 2:10–13 (in Russian)

    Google Scholar 

  25. Ruiz Del Castillo ML, Dobson G, Brennan R, Gordon S (2004) Fatty acid content and juice characteristics in black currant (Ribes nigrum L.) genotypes. J Agric Food Chem 52:948–952. https://doi.org/10.1021/jf034950q

    Article  CAS  Google Scholar 

  26. Guil-Guerrero JL, Gómez-Mercado F, Ramos-Bueno RP, González-Fernández MJ, Urrestarazu M, Jiménez-Becker S, de Bélair G (2018) Fatty acid profiles and sn-2 fatty acid distribution of γ-linolenic acid-rich Borago species. J Food Compos Anal 66:74–80. https://doi.org/10.1016/j.jfca.2017.12.005

    Article  CAS  Google Scholar 

  27. Ghasemnezhad A, Honermeier B (2008) Yield, oil constituents, and protein content of evening primrose (Oenothera biennis L.) seeds depending on harvest time, harvest method and nitrogen application. Ind Crops Prod 28:12–23. https://doi.org/10.1016/j.indcrop.2007.12.006

    Article  CAS  Google Scholar 

  28. Salina E S, Levgerova NS, Sidorova IA (2020) The results of the technological assessment of fruit and berry crops in VNIISPK. Selekciya i sortorazvedenie sadovyh kul'tur 7:137–142 (in Russian). https://doi.org/10.24411/2500-0454-2020-11236

  29. Shelkovskaya NK (2019) Sorta plodovyh i yagodnyh kul'tur sibirskoj selekcii kak syr'e dlya vin stolovogo tipa. Polzunovsky vestnik 1:59–63 (in Russian). https://doi.org/10.25712/ASTU.2072-8921.2019.01.011

  30. Stepanova NY (2015) Technological evaluation of the suitability of different varieties of black currants to produce different types of wines. Process Food Prod Equip 3:150–157

    Google Scholar 

  31. Popel S, Parşacova L, Cropotova J, Sava P (2013) Influence of different berry varieties on the overall quality of reduced-sugar jams. Horticultură, Viticultură şi vinificaţie, Silvicultură şi grădini publice 36:129–133

    Google Scholar 

  32. Struck S, Plaza M, Turner C, Rohm H (2016) Berry pomace - a review of processing and chemical analysis of its polyphenols. Int J Food Sci Technol 53:237–245. https://doi.org/10.1111/ijfs.13112

    Article  CAS  Google Scholar 

  33. May N, Güenther E (2020) Shared benefit by material flow cost accounting in the food supply chain – the case of berry pomace as upcycled by-product of a black currant juice production. J Clean Prod 245:118946. https://doi.org/10.1016/j.jclepro.2019.118946

    Article  Google Scholar 

  34. Schmidt C, Geweke I, Struck S, Zahn S, Rohm H (2018) Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: dough characteristics and product properties. Int J Food Sci Technol 53:237–245. https://doi.org/10.1111/ijfs.13639

    Article  CAS  Google Scholar 

  35. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688. https://doi.org/10.3181/0711-MR-311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the botanical gardens listed in Supplementary Table 1 for providing plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Guil-Guerrero.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovenko, E., Lyashenko, S., Akimova, S. et al. Gamma-linolenic Acid from Fifty-seven Ribes Species and Cultivars. Plant Foods Hum Nutr 76, 385–393 (2021). https://doi.org/10.1007/s11130-021-00913-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00913-8

Keywords

Navigation