Skip to main content
Log in

Peristaltic transport of nano-fluid through a bio-fluidic channel with Joule heating features: applications of physiological systems

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The peristaltic transport of nano-fluid under the influence of a magnetic field through a bio-fluidic channel is investigated numerically in this article. The geometry of the channel is assumed to be inclined and Oldroyd 4-constant fluid is flowing through it with Joule heating effects. The non-linear partial differential equations that lead the flow system are simplified using the approximations of long wavelength with low Reynolds number. The reduced coupled nonlinear are approximated by means of shooting technique. The obtained results for stream function, velocity, wall shear stress, nanoparticles volume fraction and temperature profile are demonstrated graphically to evaluate the insight physical aspects of emerging parameters such as Hartman number, angle of inclination, phase angle, Brownian motion constant, non-uniform constant and the thermophoresis parameter. Trapping phenomena is also prepared to give pictorial view to the flow phenomena

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. T.W. Latham, Fluid motions in a peristaltic pump (Doctoral dissertation, Massachusetts Institute of Technology) (1966)

  2. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37(4), 799–825 (1969)

    Article  ADS  Google Scholar 

  3. J.C. Burns, T. Parkes, Peristaltic motion. J. Fluid Mech. 29(4), 731–743 (1967)

    Article  ADS  Google Scholar 

  4. F. Yin, Y.C. Fung, Peristaltic waves in circular cylindrical tubes. J. Appl. Mech. 36(3), 579–587 (1969)

    Article  ADS  Google Scholar 

  5. S. Takabatake, K. Ayukawa, Numerical study of two-dimensional peristaltic flows. J. Fluid Mech. 122, 439–465 (1982)

    Article  ADS  Google Scholar 

  6. K.S. Mekheimer, T.H. Al-Arabi, Nonlinear peristaltic transport of MHD flow through a porous medium. Int. J. Math. Math. Sci. 2003(26), 1663–1682 (2003)

    Article  MathSciNet  Google Scholar 

  7. K.S. Mekheimer, Non-linear peristaltic transport of magnetohydrodynamic flow in an inclined planar channel. Arab. J. Sci. Eng. 28(2), 183–202 (2003)

    Google Scholar 

  8. M. Kothandapani, J. Prakash, V. Pushparaj, Analysis of heat and mass transfer on MHD peristaltic flow through a tapered asymmetric channel. J. Fluids 2015, 5 (2015)

    Article  Google Scholar 

  9. M.I. Khan, F. Alzahrani, Binary chemical reaction with activation energy in dissipative flow of non-Newtonian nanomaterial. J. Theor. Comput. Chem. 19, 2040006 (2020)

    Article  Google Scholar 

  10. O. Eytan, D. Elad, Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol. 61(2), 221–238 (1999)

    Article  Google Scholar 

  11. O. Eytan, A.J. Jaffa, J. Har-Toov, E. Dalach, D. Elad, Dynamics of the intrauterine fluid-wall interface. Ann. Biomed. Eng. 27(3), 372–379 (1999)

    Article  Google Scholar 

  12. M. Mishra, A.R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschr. Angewandte Math. Phys. ZAMP 54(3), 532–550 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  13. S. Srinivas, V. Pushparaj, Non-linear peristaltic transport in an inclined asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1782–1795 (2008)

    Article  ADS  Google Scholar 

  14. M.H. Haroun, Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Comput. Mater. Sci. 39(2), 324–333 (2007)

    Article  Google Scholar 

  15. N. Ali, T. Hayat, Peristaltic motion of a Carreau fluid in an asymmetric channel. Appl. Math. Comput. 193(2), 535–552 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Y. Wang, T. Hayat, N. Ali, M. Oberlack, Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Phys. A 387(2–3), 347–362 (2008)

    Article  MathSciNet  Google Scholar 

  17. M.S. Reddy, G.S.S. Raju, Nonlinear peristaltic pumping of Johnson-Segalman fluid in an asymmetric channel under effect of a magnetic field. Eur. J. Sci. Res. 46, 147–164 (2010)

    Google Scholar 

  18. K. Rajanikanth, S. Sreenadh, Y. Rajesh-yadav, A. Ebaid, MHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel with partial slip. Adv. Appl. Sci. Res. 3(6), 3755–3765 (2012)

  19. S. Akram, M. Hanif, S. Nadeem, Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through a porous medium. Cogent Eng. 1(1), 980770 (2014)

    Article  Google Scholar 

  20. Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transfer 125(1), 151–155 (2003)

    Article  Google Scholar 

  21. D. Tripathi, O.A. Bég, A study on peristaltic flow of nanofluids: Application in drug delivery systems. Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Article  Google Scholar 

  22. T. Hayat, Z. Nisar, H. Yasmin, A. Alsaedi, Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J. Mol. Liq. 220, 448–453 (2016)

    Article  Google Scholar 

  23. T. Hayat, F.M. Abbasi, M. Al-Yami, S. Monaquel, Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J. Mol. Liq. 194, 93–99 (2014)

    Article  Google Scholar 

  24. M.G. Reddy, O.D. Makinde, Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J. Mol. Liq. 223, 1242–1248 (2016)

    Article  Google Scholar 

  25. M.I. Khan, F. Alzahrani, Cattaneo-Christov Double Diffusion (CCDD) and magnetized stagnation point flow of non-Newtonian fluid with internal resistance of particles. Phys. Scr. 95(12), 125002 (2020)

    Article  ADS  Google Scholar 

  26. M.I. Khan, F. Alzahrani, Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation. Darcy-Forchheimer porous medium. Int. J. Hydrogen Energy 46, 1362–1369 (2021)

    Article  Google Scholar 

  27. M. Kothandapani, J. Prakash, The peristaltic transport of Carreau nanofluids under effect of a magnetic field in a tapered asymmetric channel: application of the cancer therapy. J. Mech. Med. Biol. 15(03), 1550030 (2015)

    Article  Google Scholar 

  28. M.I. Khan, F. Alzahrani, Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Math. Comput. Simul. 185, 47–61 (2021)

    Article  MathSciNet  Google Scholar 

  29. M.I. Khan, Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. Int. Commun. Heat Mass Transfer 122, 105177 (2021)

    Article  Google Scholar 

  30. J. Buongiorno, Convective transport in nanofluids. J. Heat Transfer 128(3), 240–250 (2006)

    Article  Google Scholar 

  31. A. Zaman, N. Ali, M. Sajjad, Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel. Math. Comput. Simul. 2018, 5 (2018)

    Google Scholar 

  32. A. Zaman, N. Ali, N. Kousar, Nanoparticles (Cu, TiO2, Al2O3) analysis on unsteady blood flow through an artery with a combination of stenosis and aneurysm. Comput. Math. Appl. 2018, 5 (2018)

    MATH  Google Scholar 

  33. A. Zaman, A. Afsar khan, N. Ali, Modeling of unsteady non-Newtonian blood flow through a stenosed artery: with nanoparticles. J. Braz. Soc. Mech. Sci. Eng. 40, 307 (2018)

    Article  Google Scholar 

  34. T.Y. Na, Copmutational Methods in Engineering Boundary Value Problem (Academic Press, New York, Londan, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SS., Abbasi, A., Farooq, W. et al. Peristaltic transport of nano-fluid through a bio-fluidic channel with Joule heating features: applications of physiological systems. Eur. Phys. J. Spec. Top. 230, 3731–3741 (2021). https://doi.org/10.1140/epjs/s11734-021-00231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00231-9

Navigation