Skip to main content
Log in

On Interactions of Quaternionic and Complex Structures of Linear Spaces

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

On various occasions, when working with quaternionic linear spaces, there is a need to restrict them to their complex linear structure, then it becomes essential to understand whether the pre-existing internal product or norm in the quaternionic space will continue to be compatible with the complex structure of the new space obtained. There are other situations in which these types of questions arise, for example, if a linear space is originally complex but it turns out that it also admits the quaternionic structure. The objective of this work is to present the different options to change the linearities of some linear spaces and to analyze what happens with the pre-existing algebraic objects: to understand if they still work or if they induce some others that will be compatible with the new linear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, Y.A., Aliprantis, C.D., Sirotkin, G., Troitsky, V.B.: Some open problems and conjectures associated with the invariant subspace problem. Positivity 9, 273–286 (2005)

    Article  MathSciNet  Google Scholar 

  2. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  3. Alpay, D., Luna-Elizarrarás, M.E., Shapiro, M.: Normes des extensions quaternionique d’operateurs réls. C. R. Acad. Sci. Ser. I Math. 340, 639–643 (2005)

    MATH  Google Scholar 

  4. Alpay, D., Luna-Elizarrarás, M.E., Shapiro, M.: On the norms of quaternionic extensions of real and complex linear mappings. Math. Methods Appl. Sci. 30, 1005–1036 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alpay, D., Colombo, F., Sabadini, I.: Slice Hyperholomorphic Schur analysis. Operator Theory: Advances and Applications, vol. 256. Birkhäuser/Springer, Cham (2016)

  6. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  7. Colombo, F., Gantner, J.: Quaternionic closed operators, fractional powers and fractional diffusion process. Operator Theory: Advances and Applications, vol. 274. Birkhäuser/Springer, Cham (2019)

  8. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions. Progress in Mathematics, vol. 289. Birkhäuser (2011)

  9. Colombo, F., Gantner, J., Kimsey, D.P.: Spectral Theory on the S-spectrum for quaternionic operators. Operator Theory: Advances and Applications, vol. 270. Birkhäuser/Springer, Cham (2018)

  10. Delanghe, R., Brackx, F.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. Lond. Math. Soc. 3(37), 545–576 (1978)

    Article  MathSciNet  Google Scholar 

  11. Emch, G.: Mécanique quantique quaternionienne et relativité. I. Helv. Phys. Acta 36, 739–769 (1963)

    MathSciNet  MATH  Google Scholar 

  12. Finkelstein, D., Jauch, J.M., Speiser, D.: Quaternion quantum mechanics I. European Center for Nuclear Research, Geneva, Report 59(7) (1959)

  13. Finkelstein, D., Jauch, J.M., Speiser, D.: Quaternion quantum mechanics II. European Center for Nuclear Research, Geneva, Report 59(11) (1959)

  14. Finkelstein, D., Jauch, J.M., Speiser, D.: Quaternion quantum mechanics III. European Center for Nuclear Research, Geneva, Report 59(17) (1959)

  15. Glazman, I.M., Ljubic, J.: Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form. MIT Press, Cambridge (1974)

    MATH  Google Scholar 

  16. Horwitz, L.P., Biedenharn, L.C.: Quaternion quantum mechanics: second quantization and gauge fields. Ann. Phys. 157(2), 432–488 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jefferies, B.: Spectral properties of noncommuting operators. Lecture Notes in Mathematics, vol. 1843. Springer, Berlin (2004)

    Book  Google Scholar 

  18. Luna-Elizarrarás, M.E., Shapiro, M.: Preservation of the norms of linear operators acting on some quaternionic function spaces. Oper. Theory Adv. Appl. 157, 205–220 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Luna-Elizarrarás, M.E., Shapiro, M.: On some relations between real, complex and quaternionic linear spaces. In: Begehr, H., Nicolosi, F. (eds.) More Progresses in Analysis, pp. 99–1008. World Scientific, Singapore (2009)

    Google Scholar 

  20. Luna-Elizarrarás, M.E., Ramirez-Reyes, F., Shapiro, M.: Complexification of real spaces: general aspects. Georg. Math. J. 19(2), 259–282 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Qian, T., Li, P.: Singular Integrals and Fourier Theory on Lipschitz Boundaries. Science Press, Beijing; Springer, Singapore (2019)

  22. Rastall, P.: Quaternions in relativity. Rev. Mod. Phys. 36, 820–832 (1964)

  23. Razon, A., Horwitz, L.P., Biedenharn, L.C.: On a basic theorem of quaternion modules. J. Math. Phys. 30(1), 59 (1989)

  24. Rembielinski, J.: Quaternionic Hilbert space and colour confinement: I. J. Phys. A Math. Gen. 13, 15–22 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rembielinski, J.: Quaternionic Hilbert space and colour confinement: II. The admissible symmetry groups. J. Phys. A Math. Gen. 13, 23–30 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sharma, C.S., Almeida, D.F.: Additive functionals and operators on a quaternionic Hilbert space. J. Math. Phys. 30(2), 369–375 (1989)

  27. Lomonosov, V.I.: Invariant subspaces for the family of operators which commute with a completely continuous operator. Funct. Anal. Appl. 7(3), 213–214 (1974). https://doi.org/10.1007/BF01080698

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elena Luna-Elizarrarás.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings ICCA 12, Hefei, 2020, edited by Guangbin Ren, Uwe Kähler, Rafał Abłamowicz, Fabrizio Colombo, Pierre Dechant, Jacques Helmstetter, G. Stacey Staples, Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna-Elizarrarás, M.E. On Interactions of Quaternionic and Complex Structures of Linear Spaces. Adv. Appl. Clifford Algebras 31, 60 (2021). https://doi.org/10.1007/s00006-021-01156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01156-1

Keywords

Mathematics Subject Classification

Navigation