Skip to main content
Log in

Increasing the Efficiency of Electromembrane Processes in the Area of Electrochemical Cadmium Plating

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

At the pilot plant, the main parameters of the electromembrane process of extracting cadmium ions from a sulphate-ammonium cadmium electrolyte with high performance characteristics and a bath for rinsing cadmium parts in stagnant water (collection baths) have been determined. It is shown that the degree of extraction under stationary conditions is about 99%, which corresponds to the values obtained with other sulfate-ammonium cadmium plating electrolytes and allows us to recommend the investigated electrolyte for use in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kruglikov, S.S., The use of electrochemical modules (IEMs) in plating industry, Proc. NASF SUR/FIN`2006 Conference, Milwaukee, 2006, p. 432.

  2. Yurchuk, T.Y., Bergmann, H., and Kruglikov, S.S., Verfahren der elektrochemischen Umweltschutztechnik am Beischpiel der Regenerierung chromathaltiger Baeder der Galvanotechnik, Chem. Ing. Tech., 1997, vol. 69, no. 9, p. 43.

    Article  Google Scholar 

  3. Paidar, M., Fateev, V., and Bouzek, K., Membrane electrolysis–History, current status and perspective, Electrochim. Acta, 2016, vol. 209, p. 737.

    Article  CAS  Google Scholar 

  4. Chen, G., Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 2004, vol. 38, p. 11.

    Article  Google Scholar 

  5. Steathamann, H., Grabovski, A., and Eigenberger, B., Electromembrane processes, efficient and versatile tools in a sustainable industrial development, Desalination, 2006, vol. 199, p. 1.

    Article  Google Scholar 

  6. Varentsov, V.K., Koshev, A.N., and Sukhov, I.F., Mathematical modeling and experimental studies of the joint electrodeposition of gold and silver from sulfuric acid thiourea solutions on flow-through 3D electrode taking into account its nonstationary state, Theor. Found. Chem. Eng., 2018, vol. 52, no. 4, pp. 495–505. https://doi.org/10.1134/S004057951803017X

    Article  CAS  Google Scholar 

  7. Zhelonkina, E.A., Shishkina, S.V., Mihailova, I.Yu., and Ananchenko, B.A., Study of electrodialysis of a copper chloride solution at overlimiting currents, Pet. Chem., 2017, vol. 57, no. 11, p. 947.

    Article  CAS  Google Scholar 

  8. Marder, L., Bernardes, A.M., and Ferreira, J.Z., Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system, Sep. Purif. Technol., 2004, vol. 37, p. 247.

    Article  CAS  Google Scholar 

  9. Pervov, A.G., Adrianov, A.P., Gorbunova, T.P., and Bagdasaryan, A.S., Membrane technologies in the solution of environmental problems, Pet. Chem., 2015, vol. 55, pp. 879–886. https://doi.org/10.1134/S0965544115100199

    Article  CAS  Google Scholar 

  10. Koshev, A.N. and Varentsov, V.K., Mathematical modeling of operation of a reactor with flow-through three-dimensional electrodes at the limiting diffusion current under non-steady-state conditions, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 779–785. https://doi.org/10.1134/S0040579518050354

    Article  CAS  Google Scholar 

  11. Koshev, A.N. and Varentsov, V.K., Mathematical modeling of effective systems of reactors with flow-through 3D electrodes, Theor. Found. Chem. Eng., 2018, vol. 52, no. 1, pp. 87–96. https://doi.org/10.1134/S0040579518010086

    Article  CAS  Google Scholar 

  12. Landaburu Aguirre, J., Pongracz, E., and Keiski, R.L., Separation of cadmium and copper from phosphorus rich synthetic water by micellar enhanced ultrafiltration, Sep. Purif. Technol., 2011, vol. 81, p. 41.

    Article  CAS  Google Scholar 

  13. Vasudevan, S. and Lakshmi, J., Effect of alternating and direct current in electrocoagulation process on the removal of cadmium from water—A novel approach, Sep. Purif. Technol., 2011, vol. 80, p. 643.

    Article  CAS  Google Scholar 

  14. Singh, V., Panley, S., Singh, S.K., and Sanghi, R., Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum-silica nanocomposites, Sep. Purif. Technol., 2009, vol. 67, p. 251.

    Article  CAS  Google Scholar 

  15. Cay, S., Uyanik, A., and Ozasik, A., Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea industry waste, Sep. Purif. Technol., 2004, vol. 38, p. 273.

    Article  CAS  Google Scholar 

  16. Zhai, Y., Wei, X., Zeng, G., Zhang, D., and Chu, K., Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions, Sep. Purif. Technol., 2004, vol. 38, p. 191.

    Article  CAS  Google Scholar 

  17. Reddy, B.R., Priya, D.N., and Park, K.H., Separation and recovery of cadmium(II), cobalt(II), and nickel(II) from sulfate leach liquors of spent Ni-Cd batteries using phosphorous based extractants, Sep. Purif. Technol., 2006, vol. 50, p. 161.

    Article  CAS  Google Scholar 

  18. Abbasn, I.A., Al-Amer, A.M., Laoui, T., and Atieh, M.A., Heavy metals removal by advanced carbon nanotubes: Critical review of adsorption application, Sep. Purif. Technol., 2016, vol. 157, p. 141.

    Article  Google Scholar 

  19. Okieimen, F.E., Sokbaike, C.E., and Ebhoaye, J.E., Removal of cadmium and copper ions from aqueous solution with cellulose graft polymers, Sep. Purif. Technol., 2005, vol. 44, p. 85.

    Article  CAS  Google Scholar 

  20. Shenashen, M.A., Elshehi, E.A., ElSafty, S.A., and Khairy, M., Visual monitoring and removal of divalent copper, cadmium, and mercury ions from the water by using mesoporous cubic Ia3d aluminosilica sensors, Sep. Purif. Technol., 2013, vol. 116, p. 73.

    Article  CAS  Google Scholar 

  21. Densili, A., Garipcan, B., Karabakan, A., Sai, R., and Patir, S., Metal-complexing ligand methacryloylamidocysteine containing polymer beads for Cd(II) removal, Sep. Purif. Technol., 2003, vol. 30, p. 3.

    Article  Google Scholar 

  22. Salehi, E., Madaleni, S.S., and Heidari, F., Dynamic adsorption of Ni(II) and Cd(II) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane isotherms, thermodynamics and kinetics, Sep. Purif. Technol., 2012, vol. 94, p. 18.

    Article  Google Scholar 

  23. Fiol, N., Escusa, I.V., Martinez, M., Miralles, N., and Seratols, J., Sorption of Pb(II), Ni(II), Cu(II), Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol., 2006, vol. 59, p. 132.

    Article  Google Scholar 

  24. Al Hamouz, O.C.S., Estatie, M., and Saleh, T.A., Removal of cadmium ions from wastewater by dithiocarbamate functionalized pyrrole based terpolymers, Sep. Purif. Technol., 2017, vol. 177, p. 101.

    Article  CAS  Google Scholar 

  25. Jiha, M.K., Gupta, D., Choubey, P.K., Kumar, V., and Lee, J.-Ch., Solvent extraction of copper, zinc, cadmium, and nickel from sulfate solution in mixer settler unit (MSU), Sep. Purif. Technol., 2014, vol. 122, p. 119.

    Article  Google Scholar 

  26. Mauchauffee, S., Meux, E., and Schneider, M., Selective precipitation of cadmium from nickel cadmium sulfate solutions using sodium deconate, Sep. Purif. Technol., 2008, vol. 62, p. 394.

    Article  CAS  Google Scholar 

  27. Ghaeabaghi, M., Irannajad, M., and Azadmehr, A.R., Leaching behavior of cadmium from hazardous waste, Sep. Purif. Technol., 2012, vol. 86, p. 9.

    Article  Google Scholar 

  28. Mahandra, H., Singh, R., and Gupta, B., Liquid-liquid extraction studies on Zn(II) and Cd(II) using phosponium ionic liquid (Cyphos IL 104) and recovery of zinc from zinc plating mud, Sep. Purif. Technol., 2017, vol. 177, p. 281.

    Article  CAS  Google Scholar 

  29. Sharma, R.K., Puri, A., Monga, Y., and Adholeya, A., Newly modified silica-based magnetically-driven nano-adsorbent: A sustainable and versatile platform for efficient and selective recovery of cadmium from water and fly-ash ameliorated soil, Sep. Purif. Technol., 2014, vol. 127, p. 121.

    Article  CAS  Google Scholar 

  30. Segund, J.O.D.V., Salazar-Banda, G.R., Feitoza, A.C.O., Vilar, E.O., and Cavalcanti, E.B., Cadmium and lead removal from aqueous synthetic waste utilizing Chemelec electrochemical reactor: Study of the operating conditions, Sep. Purif. Technol., 2012, vol. 88, p. 1107.

    Google Scholar 

  31. Yaftian, M.R., Zamani, A.A., Parinejad, M., and Shams, E., Ion-pair extraction of cadmium complex anions from hydrochloric acid media using oxonium dicyclohexyl-18-crown-6-complex, Sep. Purif. Technol., 2005, vol. 42, p. 175.

    Article  CAS  Google Scholar 

  32. Svecova, L., Spanelova, M., Kubal, M., and Guibal, E., Cadmium, lead, and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies, Sep. Purif. Technol., 2006, vol. 52, p. 142.

    Article  CAS  Google Scholar 

  33. Nekrasova, N.E., Kruglikova, E.S., Telezhkina, A.V., Kapustin, E.S., and Kravchenko, D.V., The use of Ti/IrO2/SnO2/PbO2 anode in cadmium passivating solution, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 4, pp. 4–9.

    Google Scholar 

  34. Kruglikov, S.S., Application of electromembrane processes in chromium electroplating technology, Pet. Chem., 2016, vol. 56, no. 10, p. 976.

    Article  Google Scholar 

  35. Kruglikov, S.S., Telezhkina, A.V., Kapustin, E.S., and Kravchenko, D.V., Anode materials for the electrolysis of chromate-nitrate solutions, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 3, p. 37.

    Google Scholar 

  36. Kruglikov, S.S., Kolesnikov, V.A., Nekrasova, N.E., and Gubin, A.F., Regeneration of chromium electroplating electrolytes by the application of electromembrane processes, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 800–805. https://doi.org/10.1134/S0040579518050366

    Article  CAS  Google Scholar 

  37. Kruglikov, S.S., Application of electromembrane processes for the stabilization and control of process solutions in electrolytic cells, Gal’vanotekh. Obrab. Poverkhn., 2018, vol. 26, no. 2, p. 41.

    Google Scholar 

  38. Kruglikov, S.S., Kochergina, L.I., Belkina, L.N., and Yashina, O.Ya., Industrial-scale operation of immersed electrochemical modules in reclaim tanks after cadmium and chromium plating operations, Gal’vanotekh. Obrab. Poverkhn., 2005, vol. 13, no. 1, p. 69.

    Google Scholar 

  39. Kruglikov, S.S. and Sirotkin, V.I., Removal of cadmium and cyanide ions from rinse water in plating shops, Proc. AEFS SUR/FIN`2006 Conference, Milwaukee, 2006, p. 474.

  40. Kruglikov, S.S., Sirotkin, V.I., and Vorobyova, M.A., Successful operation of immersed electrochemical modules in a number of Moscow plating shops, Gal’vanotekh. Obrab. Poverkhn., 2009, vol. 17, no. 4, p. 48.

    Google Scholar 

  41. Kruglikov, S.S., Nekrasova, N.E., Kuznetsov, V.V., and Filatova, E.A., An electromembrane process for cadmium recovery from dilute cadmium electroplating dragout solutions, Membr. Membr. Technol., 2019, vol. 1, no. 2, p. 120.

    Article  CAS  Google Scholar 

  42. Arkhipov, E.A., Grigoryan, N.S., Shuvalov, D.A., Zhirukhin, D.A., Smirnov, K.N., and Vagramyan, T.A., Universal additive for acid cadmium plating baths, Gal’vanotekh. Obrab. Poverkhn., 2018, vol. 26, no. 4, p. 21.

    Google Scholar 

  43. Smirnov, K.N., Kravchenko, D.V., and Arkhipov, E.A., Additives for ammonium sulfate cadmium plating solution: Practical experience, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 2, p. 35.

    Google Scholar 

  44. Arkhipov, E.A., Smirnov, K.N., Zhirukhin, D.A., Volodin, I.A., Kalinkina, A.A., and Vagramyan, T.A., RF Patent 2644639, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kruglikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglikov, S.S., Arkhipov, E.A., Zhirukhin, D.A. et al. Increasing the Efficiency of Electromembrane Processes in the Area of Electrochemical Cadmium Plating. Theor Found Chem Eng 55, 359–363 (2021). https://doi.org/10.1134/S0040579521030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030106

Keywords:

Navigation