Skip to main content
Log in

Role of Operating Process Parameters on Stability Performance of Green Emulsion Liquid Membrane Based on Rice Bran Oil

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The current research work elucidates an experimental study on the stability performance of a green emulsion liquid membrane (GELM). A GELM based on rice bran oil (RBO) is a new subset of a previously existing organic solvent-based emulsion liquid membrane (ELM). These organic solvents are responsible for several environmental as well as for economic problems. A GELM is an economical and environmentally friendly green separation technique. The GELM was formulated using a green solvent (RBO), emulsifying agent (Span 80), and stripping aqueous phase agent (NaOH). Emulsification speed of 2100 (r.min−1), emulsification time of 20 (min), 2% (v/v) Span 80 concentration, 0.25 [M] NaOH concentration, 1 : 3.5 (v/v) treat ratio, 0.4 (v/v) phase ratio, agitation speed of 400 (r.min−1), and agitation time of 20 (min) have been obtained as the optimum values of process parameters. The highest achievable dynamic stability was found to be 150 ± 2 min along with the negligible emulsion swelling/breakage (%). Moreover, the membrane breakage (%) has been obtained <1 ± 0.05% which was in trade-off with the emulsion swelling (%) under these obtained optimum process parameters. Thus, this present investigation on the stability performance of GELM provides the new insights regarding the role of various process parameters which will be further helpful during the extraction of low concentrated solutes through GELM based separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Rangsansarid, J. and Fukada, K., Factors affecting the stability of O/W emulsion in BSA solution: Stabilization by electrically neutral protein at high ionic strength, J. Colloid Interface Sci., 2007, vol. 316, pp. 779–786.

    Article  CAS  PubMed  Google Scholar 

  2. Benichou, A., Aserin, A., and Garti, N., Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters, Adv. Colloid Interface Sci., 2004, vols. 108–109, pp. 29–41.

    Article  PubMed  CAS  Google Scholar 

  3. Nemeht, A. and Peteghem, A.P.V., Membrane recycling in the liquid surfactant membrane process, Ind. Eng. Chem. Res., 1993, vol. 32, pp. 1431–1437.

    Article  Google Scholar 

  4. Wan, Y. and Zhang, X., Swelling determination of W/O/W emulsion liquid membranes, J. Membr. Sci., 2002, vol. 196, pp. 185–201.

    Article  CAS  Google Scholar 

  5. Gu, Z., Ho, W.S., and Li, N.N., Emulsion liquid membrane: Design considerations, Membrane Handbook, Winston, W.S. and Sirkar, K.K., Eds., New York: Chapman & Hall, 1992, pp. 656–700.

    Google Scholar 

  6. Draxler, J., Furst, W., and Marr, R.J., Separation of metal species by emulsion liquid membranes, J. Membr. Sci., 1988, vol. 38, pp. 281–293.

    Article  CAS  Google Scholar 

  7. Cahn, R.P., Frankenfeld, J.W., and Li, N.N., Extraction of metal ions by liquid membrane, Recent Developments in Separation Science, Li, N.N., Ed., Boca Raton, Fla.: CRC, 1981, pp. 51–64.

    Google Scholar 

  8. Yan, N.X., Huang, S.A., and Shi, Y.J., Removal of acetic acid from wastewater with liquid surfactant membranes: an external boundary layer and membrane diffusion-controlled model, Sep. Sci. Technol., 1987, vol. 22, pp. 801–818.

    Article  CAS  Google Scholar 

  9. Huo, W. and Papadopoulos, K.D., Stability of water-in-oil-in-water type globules, Chem. Eng. Sci., 1996, vol. 51, pp. 5043–5051.

    Article  Google Scholar 

  10. Wen, L.X. and Papadopoulos, K.D., Effects of surfactants on water transport in W1/O/W2 emulsions, Langmuir, 2000, vol. 16, pp. 7612–7617.

    Article  CAS  Google Scholar 

  11. Wen, L.X. and Papadopoulos, K.D., Visualization of water transport in W1/O/W2 emulsions, Colloids Surf., A, 2000, vol. 174, pp. 159–167.

    Article  CAS  Google Scholar 

  12. Yan, J. and Pal, R., Osmotic swelling behaviour of globules of W/O/W emulsion liquid membranes, J. Membr. Sci., 2001, vol. 190, pp. 79–91.

    Article  CAS  Google Scholar 

  13. Ohtake, T., Hano, K., and Takagi, T., Effects of viscosity on drop diameter of w/o emulsion dispersed in a stirred tank, J. Chem. Eng. Jpn., 1987, vol. 20, pp. 443–447.

    Article  CAS  Google Scholar 

  14. Konno, M., Kosaka, N., and Saito, S., Correlation of transient of transient drop sizes inbreak-up process in liquid-liquid agitation, J. Chem. Eng. Jpn., 1993, vol. 26, pp. 37–40.

    Article  CAS  Google Scholar 

  15. Park, Y., Forney, L.J., Kim, J.H., and Skelland, A.H.P., Optimum emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor-Couette flow, Chem. Eng. Sci., 2004, vol. 59, pp. 5725–5734.

    Article  CAS  Google Scholar 

  16. Kulkarni, P.S., Tiwari, K.K., and Mahajani, V.V., Membrane stability and enrichment of nickel in the liquid emulsion membrane process, J. Chem. Technol. Biotechnol., 2000, vol. 75, pp. 553–560.

    Article  CAS  Google Scholar 

  17. Belova, V.V., Free supported liquid membranes, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, pp. 642–647. https://doi.org/10.1134/S0040579516040059

    Article  CAS  Google Scholar 

  18. Belova, V.V. and Zakhodyaeva, Yu.A., Extraction and separation of metals using the combined method of liquid membrane techniques, Theor. Found. Chem. Eng., 2015, vol. 49, pp. 567–572. https://doi.org/10.1134/S004057951504003X

    Article  CAS  Google Scholar 

  19. Kostanyan, A.E., On the application of liquid-membrane principle in a system of mixing-settling extractors, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, pp. 495–498. https://doi.org/10.1134/S004057951304009X

    Article  CAS  Google Scholar 

  20. Reis, M.T.A., Freitas, O.M., Agarwal, S., Ferreira, L.M., Ismael, M.R.C., Machado, R., and Carvalho, J.M., Removal of phenols from aqueous solutions by emulsion liquid membranes, J. Hazard. Mater., 2011, vol. 192, pp. 986–994.

    Article  CAS  PubMed  Google Scholar 

  21. Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., and Bakhtiari, O., Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane, Chem. Eng. Res. Des., 2014, vol. 92, pp. 375–383.

    Article  CAS  Google Scholar 

  22. Ahmad, A.L., Kusumastuti, A., Derek C.J.C., and Ooi, B.S., Emulsion liquid membrane for cadmium removal: Studies on emulsion diameter and stability, Desalination, 2012, vol. 287, pp. 30–34.

    Article  CAS  Google Scholar 

  23. Polak, J. and Lu, B.C.Y., Mutual solubilities of hydrocarbons and water at 0 and 25 °C, Can. J. Chem., 1973, vol. 51, pp. 4018–4023.

    Article  CAS  Google Scholar 

  24. Ahmad, A.L., Buddin, M.H.H., Ooi, B.S., and Adhi, K., Utilization of environmentally benign emulsion liquid membrane (ELM) for cadmium extraction from aqueous solution, J. Water Process Eng., 2017, vol. 15, pp. 26–30.

    Article  Google Scholar 

  25. Jusoh, O., Othman, N., and Nasruddin, N.A., Emulsion liquid membrane technology in organic acid purification, Malays. J. Anal. Sci., 2016, vol. 20, no. 2, pp. 436–443.

    Article  Google Scholar 

  26. Björkegren, S., Karimi, R.F., Martinelli, A., Jayakumar, N.S., and Hashim, M.A., A new emulsion liquid membrane based on a palm oil for the extraction of heavy metals, Membranes (Basel, Switz.), 2015, vol. 5, pp. 168–179. https://doi.org/10.3390/membranes5020168

  27. Kumar, A., Thakur, A., and Panesar, P.S., Statistical optimization of lactic acid extraction using green emulsion ionic liquid membrane (GEILM), J. Environ. Chem. Eng., 2018, vol. 6, pp. 1855–1864.

    Article  CAS  Google Scholar 

  28. Kumar, A., Thakur, A., and Panesar, P.S., Stability analysis of environmentally benign green emulsion liquid membrane, J. Dispersion Sci. Technol., 2018, vol. 39, pp. 1510–1517.

    Article  CAS  Google Scholar 

  29. Dhamodaran, G., Krishnan, R., Pochareddy, Y.K., Pyarelal, H.M., Sivasubramanian, H., and Ganeshram, A.K., A comparative study of combustion, emission, and performance characteristics of rice-bran, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation, Fuel, 2017, vol. 187, pp. 296–305.

    Article  CAS  Google Scholar 

  30. Shi, C., Liu, R., Chang, M., Jin, O., and Wang, X., Composition of rice bran stearin from various refineries across china, J. Am. Oil Chem. Soc., 2016, vol. 93, pp. 869–877.

    Article  CAS  Google Scholar 

  31. Othman, N., Zailani, S., and Mili, N., Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier, J. Hazard. Mater., 2011, vol. 198, pp. 103–112.

    Article  CAS  PubMed  Google Scholar 

  32. Ramaseder, C., Bart, H.J., and Marr, R., Phenomenological and mathematical and mathematical description of the osmotic influence in the liquid membrane technique, Sep. Sci. Technol., 1993, vol. 28, pp. 929–945.

    Article  CAS  Google Scholar 

  33. Othman, N., Noah, N.F.M., Shu, L.Y., Jusoh, Z.Y.O.N., Idroas, M., and Goto, M., Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process, Chin. J. Chem. Eng., 2017, vol. 25, pp. 45–52.

    Article  CAS  Google Scholar 

  34. Gasser, M.S., El-Hefny, N.E., and Daoud, J.A., Extraction of Co (II) from aqueous solution using emulsion liquid membrane, J. Hazard. Mater., 2008, vol. 151, pp. 610–615.

    Article  CAS  PubMed  Google Scholar 

  35. Venkatesan, S. and Begum, K.M.M.S., Emulsion liquid membrane pertraction of imidazole from dilute aqueous solutions by Aliquat-336 mobile carrier, Desalination, 2009, vol. 236, pp. 65–77. https://doi.org/10.1016/j.desal.2007.10.052

    Article  CAS  Google Scholar 

  36. Frenkenfeld, J.W. and Li, N.N., Recent advances in liquid membrane technology, Handbook of Separation Process Technology, Rousseau, R.W., Ed., New York: Wiley, 1987, pp. 840–861.

    Google Scholar 

  37. Nakashio, F., Recent advances in separation of metals by liquid surfactant membranes, J. Chem. Eng. Jpn., 1993, vol. 26, pp. 123–133.

    Article  CAS  Google Scholar 

  38. Itoh, H., Thien, M.P., Hatton, T.A., and Wang, D.I.C., Water transport mechanism in liquid emulsion membrane process for the separation of amino acids, J. Membr. Sci., 1990, vol. 51, pp. 309–322.

    Article  CAS  Google Scholar 

  39. Djenouhat, M., Hamdaoui, O., Chiha, M., and Samar, M.H., Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 1: Membrane stability, Sep. Purif. Technol., 2008, vol. 62, pp. 636–641.

    Article  CAS  Google Scholar 

  40. Koroleva, M.Y., Gorbachevski, O.S., and Yurtov, E.V., Paraffin wax emulsions stabilized with polymers, surfactants, and nanoparticles, Theor. Found. Chem. Eng., 2017, vol. 51, pp. 125–132. https://doi.org/10.1134/S0040579516060087

    Article  CAS  Google Scholar 

  41. Ahmad, A.L., Kusumastuti, A., Derek, C.J.C., and Ooi, B.S., Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization, Chem. Eng. J., 2011, vol. 171, pp. 870–882.

    Article  CAS  Google Scholar 

  42. Chiha, M., Samar, M.H., and Hamdaoui, O., Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM), Desalination, 2006, vol. 194, pp. 69–80.

    Article  CAS  Google Scholar 

  43. Juang, R.-S. and Lin, K.-H., Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes, Colloids Surf., A, 2004, vol. 238, pp. 43–49. https://doi.org/10.1016/j.colsurfa.2004.02.028

    Article  CAS  Google Scholar 

  44. Laki, S. and Kargari, A., Extraction of silver ions from aqueous solutions by emulsion liquid membrane, J. Membr. Sci. Res., 2007, vol. 2, pp. 33–40. https://doi.org/10.22079/JMSR.2016.15876

    Article  Google Scholar 

  45. Zereshki, S., Daraei, P. and Shokri, A., Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane, J. Hazard. Mater., 2018, vol. 356, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kaghazchi, T., Kargari, A., Yegani, R., and Zare, A., Emulsion liquid membrane pertraction of L-lysine from dilute aqueous solutions by D2EHPA mobile carrier, Desalination, 2006, vol. 190, pp. 161–171.

    Article  CAS  Google Scholar 

  47. Venkatesan, S. and Begum, K.M.M.S., Removal of trivalent chromium from dilute aqueous solutions and industrial effluents using emulsion liquid membrane technique, Int. J. Environ. Eng., 2010, vol. 2, pp. 250–268.

    Article  Google Scholar 

  48. Kumar, A., Thakur, A., and Panesar, P.S., Lactic acid extraction using environmentally benign green emulsion ionic liquid membrane, J. Cleaner Prod., 2018, vol. 181, pp. 574–583.

    Article  CAS  Google Scholar 

  49. Othman, N., Chan, K.H., Goto, M., and Mat, H., Emulsion liquid membrane extraction of silver from photographic waste using CYANEX 302 as the mobile carrier, Solvent Extr. Res. Dev., Jpn., 2006, vol. 13, pp. 191–202.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Sant Longowal Institute of Engineering and Technology for providing the lab facilities and all necessary help to perform this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil Kumar, Thakur, A. & Panesar, P.S. Role of Operating Process Parameters on Stability Performance of Green Emulsion Liquid Membrane Based on Rice Bran Oil. Theor Found Chem Eng 55, 534–544 (2021). https://doi.org/10.1134/S0040579521030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030118

Keywords:

Navigation