Skip to main content
Log in

Soft EHL-Based Friction Mechanism of Unreinforced and GF-Reinforced PA66 in Contact with Steel Under PAO8 Oil Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Polyamide 66 is widely used in polymer sliding parts including polymer gear. These parts are used under lubrication of oil and grease. In this study, the friction mechanism of the contact between polyamide 66 and a steel counterpart lubricated with additive-free polyalphaolefin8 oil was discussed by focusing on various parameters including the sliding surface roughness, normal load (contact pressure), sliding speed, temperature, and hardness of the steel counterpart. To explain the friction coefficient obtained under different test conditions, the theoretical minimum oil film thickness was calculated using the equation of the soft elastic hydrodynamic lubrication regime presented by Hamrock and Dowson considering the temperature dependence of oil viscosity and polymer mechanical properties, and the master curve of the relationship between Λ and the friction coefficient was proposed considering the change in the roughness on the sliding surface. In addition, the contributions of the oil film based on the proposed master curve and lubricated solid/solid contact based on the Bowden-Tabor theory to the friction coefficient were discussed. Furthermore, the friction mechanism using the glass fiber-reinforced PA66 composite was investigated and compared to that of the unreinforced PA66.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

The raw data can be obtained from the authors upon request.

References

  1. Senthilvelan, S., Gnanamoorthy, R.: Damage mechanisms in injection molded unreinforced, glass and carbon reinforced nylon 66 spur gears. Appl. Compos. Mater. 11, 377–397 (2004). https://doi.org/10.1023/B:ACMA.0000045313.47841.4e

    Article  CAS  Google Scholar 

  2. Sarita, B., Senthilvelan, S.: Effects of lubricant on the surface durability of an injection molded polyamide 66 spur gear paired with a steel gear. Tribol. Int. 137, 193–211 (2019). https://doi.org/10.1016/j.triboint.2019.02.050

    Article  CAS  Google Scholar 

  3. Tavčar, J., Grkman, G., Duhovnik, J.: Accelerated lifetime testing of reinforced polymer gears. J. Adv. Mech. Des. Syst. Manuf. 12, 1–13 (2018). https://doi.org/10.1299/jamdsm.2018jamdsm0006

    Article  Google Scholar 

  4. Zhang, Y., Purssell, C., Mao, K., Leigh, S.: A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribol. Int. 141, 105953 (2020). https://doi.org/10.1016/j.triboint.2019.105953

    Article  CAS  Google Scholar 

  5. Mehat, N.M., Noor, H.M., Kamaruddin, S.: Optimization of multiple quality characteristics for injection moulded polyamide helical gear via integration of Taguchi method and Grey relational analysis. Mater. Sci. Eng. 932, 012122 (2020). https://doi.org/10.1088/1757-899X/932/1/012122

    Article  CAS  Google Scholar 

  6. Oh, H., Azarian, M.H., Morillo, C., Pecht, M., Rhem, E.: Failure mechanisms of ball bearings under lightly loaded, non-accelerated usage conditions. Tribol. Int. 81, 291–299 (2015). https://doi.org/10.1016/j.triboint.2014.09.014

    Article  CAS  Google Scholar 

  7. Wenhu, Z., Sier, D., Guoding, C., Yongcun, C.: Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing. Chin. J. Aeronaut. 30, 827–835 (2017). https://doi.org/10.1016/j.cja.2016.08.019

    Article  Google Scholar 

  8. Butorin, D.V., Filippenko, N.G., Livshits, A.V., Popov, S.I.: Analysis of failures of bearings of axle box unit with polyamide cages and prospects of increasing their service life. IOP Conf. Ser. (2019). https://doi.org/10.1088/1757-899X/760/1/012010

    Article  Google Scholar 

  9. Harrass, M., Friedrich, K., Almajid, A.A.: Tribological behavior of selected engineering polymers under rolling contact. Tribol. Int. 43, 635–646 (2010). https://doi.org/10.1016/j.triboint.2009.10.003

    Article  CAS  Google Scholar 

  10. Wesołowski, J., Płachta, K.: The polyamide market. Fibres Text. East. Eur. 120, 12–18 (2016). https://doi.org/10.5604/12303666.1215537

    Article  Google Scholar 

  11. Rajesh, J.J., Bijwe, J., Tewari, U.S.: Abrasive wear performance of various polyamides. Wear 252, 769–776 (2002). https://doi.org/10.1016/S0043-1648(02)00039-X

    Article  CAS  Google Scholar 

  12. Poirel, P.: Prospects for electric power steering. ATZ Worldw. 114, 10–14 (2012). https://doi.org/10.1007/s38311-012-0170-4

    Article  Google Scholar 

  13. Kim, G.H., Lee, J.W., Seo, T.I.: Durability characteristics analysis of plastic worm wheel with glass fiber reinforced polyamide. Materials 6, 1873–1890 (2013). https://doi.org/10.3390/ma6051873

    Article  CAS  Google Scholar 

  14. Kim, S.H., Shin, M.C., Byun, J.W., Hwan, K.O., Chu, C.N.: Efficiency prediction of worm gear with plastic worm wheel. Int. J. Precis. Eng. Manuf. 13, 167–174 (2012). https://doi.org/10.1007/s12541-012-0021-7

    Article  Google Scholar 

  15. Kunishima, T., Miyake, K., Kurokawa, T., Arai, H.: Clarification of tribological behavior on tooth surface of resin worm gear for electric power steering. JTEKT Eng. J. Engl. Ed. 1013E, 27–33 (2016)

    Google Scholar 

  16. Xu, L., Zhu, Z., Chen, G., Qu, C.: Effect of load and sliding velocity on tribological behaviors of aramid fiber reinforced PA1010 composites. Ind. Lubr. Tribol. 62, 46–51 (2010). https://doi.org/10.1108/00368791011012461

    Article  Google Scholar 

  17. Velde, F.V.D., Baets, P.D.: The friction and wear behaviour of polyamide 6 sliding against steel at low speed under very high contact pressures. Wear 209, 106–114 (1997). https://doi.org/10.1016/S0043-1648(96)07500-X

    Article  Google Scholar 

  18. Horovistiz, S., Laranjeira, J.P.: Davim, Influence of sliding velocity on the tribological behavior of PA66GF30 and PA66 + MoS2: an analysis of morphology of sliding surface by digital image processing. Polym. Bull. 75, 5113–5131 (2018). https://doi.org/10.1007/s00289-018-2314-1

    Article  CAS  Google Scholar 

  19. Shin, M.W., Kim, S.S., Jang, H.: Friction and wear of polyamide 66 with different weight average molar mass. Tribol. Lett. 44, 151–158 (2011). https://doi.org/10.1007/s11249-011-9833-3

    Article  CAS  Google Scholar 

  20. Lates, M.T., Velicu, R., Gavrila, C.C.: Temperature, pressure, and velocity influence on the tribological properties of PA66 and PA46 Polyamides. Materials 12(20), 3452 (2019). https://doi.org/10.3390/ma12203452

    Article  CAS  Google Scholar 

  21. Samyn, P., Schoukens, G., Driessche, I.V., Craenenbroeck, J.V., Verpoort, F.: Softening and melting mechanisms of polyamides interfering with sliding stability under adhesive conditions. Polymer 47, 5050–5065 (2006). https://doi.org/10.1016/j.polymer.2006.05.034

    Article  CAS  Google Scholar 

  22. Tatsumi, G., Ratoi, M., Shitara, Y., Sakamoto, K., Mellor, B.G.: Effect of organic friction modifiers on lubrication of PEEK-steel contact. Tribol. Int. 151, 106513 (2020). https://doi.org/10.1016/j.triboint.2020.106513

    Article  CAS  Google Scholar 

  23. Tatsumi, G., Ratoi, M., Shitara, Y., Sakamoto, K., Mellor, B.G.: Effect of lubrication on friction and wear properties of PEEK with steel counterparts. Tribol. Online 14, 345–352 (2019). https://doi.org/10.2474/trol.14.345

    Article  Google Scholar 

  24. Zhang, S., Cui, C., Chen, G.: Tribological behavior of MC Nylon6 composites filled with glass fiber and fly ash. J. Wuhan Univ. Technol. Mater. Sci. Ed. 27, 290–295 (2012). https://doi.org/10.1007/s11595-012-0455-x

    Article  CAS  Google Scholar 

  25. Kochi, T., Ichimura, R., Yoshihara, M., Dong, D., Kimura, Y.: Film thickness and traction in soft EHL with grease. Tribol. Online 12(4), 171–176 (2017). https://doi.org/10.2474/trol.12.171

    Article  Google Scholar 

  26. Jia, B.B., Li, T.S., Liu, X.J., Cong, P.H.: Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions. Wear 262, 1353–1359 (2007). https://doi.org/10.1016/j.wear.2007.01.011

    Article  CAS  Google Scholar 

  27. Kunishima, T., Nagai, Y., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V., Kapsa, Ph.: Tribological behavior of glass fiber reinforced-PA66 in contact with carbon steel under high contact pressure, sliding and grease lubricated conditions. Wear 456–457, 203383 (2020). https://doi.org/10.1016/j.wear.2020.203383

    Article  CAS  Google Scholar 

  28. Kunishima, T., Nagai, Y., Nagai, S., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V., Kapsa, Ph.: Effects of glass fiber properties and polymer molecular mass on the mechanical properties and tribological properties of a polyamide-66-based composite in contact with carbon steel under grease lubrication. Wear 462–463, 203500 (2020). https://doi.org/10.1016/j.wear.2020.203500

    Article  CAS  Google Scholar 

  29. Kunishima, T., Nagai, S., Kurokawa, T., Galipaud, J., Guillonneau, G., Bouvard, G., Abry, J.-C., Minfray, C., Fridrici, V., Kapsa, Ph.: Effects of temperature and addition of zinc carboxylate to grease on the tribological properties of PA66 in contact with carbon steel. Tribol. Int. 153, 106578 (2021). https://doi.org/10.1016/j.triboint.2020.106578

    Article  CAS  Google Scholar 

  30. Kunishima, T., Kurokawa, T., Arai, H., Fridrici, V., Kapsa, Ph.: Reactive extrusion mechanism, mechanical and tribological behavior of fiber reinforced polyamide 66 with added carbodiimide. Mater. Des. 188, 108447 (2020). https://doi.org/10.1016/j.matdes.2019.108447

    Article  CAS  Google Scholar 

  31. Kunishima, T., Nagai, Y., Bouvard, G., Abry, J.-C., Fridrici, V., Kapsa, P.: Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear (2021). https://doi.org/10.1016/j.wear.2021.203899

    Article  Google Scholar 

  32. Takabi, J., Khonsari, M.M.: On the dynamic performance of roller bearings operating under low rotational speeds with consideration of surface roughness. Tribol. Int. 86, 62–71 (2015). https://doi.org/10.1016/j.triboint.2015.01.011

    Article  Google Scholar 

  33. Hamrock, B.J., Dowson, D.: Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication. NASA Tech. Pap. 1342, 1–22 (1978)

    Google Scholar 

  34. Marx, N., Guegan, J., Spikes, H.A.: Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99, 267–277 (2016). https://doi.org/10.1016/j.triboint.2016.03.020

    Article  CAS  Google Scholar 

  35. Esfahanian, M., Hamrock, B.J.: Fluid-film lubrication regimes revisited. Tribol. Trans. 34, 628–632 (1991). https://doi.org/10.1080/10402009108982081

    Article  CAS  Google Scholar 

  36. Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005). https://doi.org/10.1007/s11249-005-9067-3

    Article  Google Scholar 

  37. Hamrock, B.J., Dowson, D.: Elastohydrodynamic lubrication of elliptical contacts for materials of low elastic modulus I—fully flooded conjunction. J. Lubr. Technol. 100, 236–245 (1978). https://doi.org/10.1115/1.3453152

    Article  Google Scholar 

  38. Dearn, K.D., Hoskins, T.J., Andrei, L., Walton, D.: Lubrication regimes in high-performance polymer spur gears. Adv. Tribol. 2013, 987251 (2013). https://doi.org/10.1155/2013/987251

    Article  Google Scholar 

  39. Cann, P., Ioannides, E., Jacobson, B., Lubrecht, A.A.: The lambda ratio —a critical re-examination. Wear 175, 177–188 (1994). https://doi.org/10.1016/0043-1648(94)90181-3

    Article  CAS  Google Scholar 

  40. Joyce, T.: Handbook of Polymer Tribology: Chapter 4: Biopolymer Tribology, pp. 111–152. World Scientific Publishing, Singapore (2018)

    Book  Google Scholar 

  41. Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Br. J. Appl. Phys. 17, 1521–1544 (1966). https://doi.org/10.1088/0508-3443/17/12/301

    Article  CAS  Google Scholar 

  42. Myshkin, N., Kovalev, A.: Handbook of Polymer Tribology: Chapter 1: Adhesion and Friction of Polymers and Polymer Composite, pp. 3–45. World Scientific Publishing, Singapore (2018)

    Google Scholar 

  43. Yamaguchi, Y.: Tribology of Plastic Materials: Their Characteristics and Applications to Sliding Components, 1st edn. Elsevier, Amsterdam (1990)

    Google Scholar 

  44. Hossain, M.M., Sue, H.J.: Handbook of Polymer Tribology: Chapter 6: FEM Modeling of Scratch-Induced Deformation in Polymers, pp. 183–219. World Scientific Publishing, Singapore (2018)

    Google Scholar 

Download references

Funding

This work does not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

TK: Conceptualization, Validation, Investigation, Writing—original draft, GB: Methodology, Software, Writing—review & editing, JCA: Methodology, Writing—review & editing, VF: Conceptualization, Writing—review & editing, Project administration, Supervision, PK: Conceptualization, Writing—review & editing, Project administration, Supervision.

Corresponding author

Correspondence to Takeshi Kunishima.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical Approval

Ethical approval was obtained from JTEKT CORPORATION and Laboratoire de Tribologie et Dynamique des Systèmes.

Consent to Publish

All authors have seen the manuscript and approved to submit to your journal, and we would greatly appreciate for your attention and consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunishima, T., Bouvard, G., Abry, JC. et al. Soft EHL-Based Friction Mechanism of Unreinforced and GF-Reinforced PA66 in Contact with Steel Under PAO8 Oil Lubrication. Tribol Lett 69, 111 (2021). https://doi.org/10.1007/s11249-021-01479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01479-x

Keywords

Navigation