Skip to main content
Log in

Deuterium double quantum-filtered NMR studies of peripheral and optic nerves

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Characterization of the nerve components by deuterium double quantum-filtered magnetization transfer (DQF-MT) NMR.

Methods

Nerves were equilibrated in deuterated saline and 2H single-pulse and 2H DQF-MT NMR spectra were measured, enabling the separation of the different water compartments, according to their quadrupolar splittings.

Results

Rat sciatic and brachial nerves and porcine optic nerve immersed in deuterated saline yielded 2H DQF spectra composed of three pairs of quadrupolar-split signals assigned to the water in the collagenous compartments and the myelin bilayer and one narrow signal assigned to the axonal water. Stretching of the nerves, application of osmotic stress and incubation in collagenase did not affect the quadrupolar splitting of the myelin water. The signals of myelin and axonal water were shown to decay during Wallerian degeneration and to rise during maturation. The chemical exchange between the myelin and the intra-axonal water was measured for optic nerve during maturation. The quadrupolar splitting of the signal of myelin water was not sensitive to its orientation relative to the magnetic field. This resembles liquid crystalline behavior, but leaves its mechanism open for interpretation.

Conclusions

2H DQF-MT NMR characterizes the different components of nerves, the water exchange between them and their changes during processes such as nerve maturation and Wallerian degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Navon G, Shinar H, Eliav U, Seo Y (2001) Multiquantum filters and order of tissues. NMR Biomed 14:112–132

    Article  CAS  PubMed  Google Scholar 

  2. Ushiki T, Ide C (1986) Three-dimensional architecture of the endometrium with special reference to collagen fibril arrangement in relation to nerve fibers. Arch Histol Jpn 49:553–563

    Article  CAS  PubMed  Google Scholar 

  3. Vasilescu V, Katona E, Simplaceanu V, Demco D (1978) Water compartments in the myelinated nerve. III. Pulsed NMR results. Experientia 34:1443–1444

    Article  CAS  PubMed  Google Scholar 

  4. Menon RS, Rusinko MS, Allen PS (1992) Proton relaxation studies of water compartmentalization in a model neurological system. Magn Reson Med 28:264–274

    Article  CAS  PubMed  Google Scholar 

  5. Wachowicz K, Snyder RE (2002) Assignment of the T2 components of amphibian peripheral nerve to their microanatomical compartments. Magn Reson Med 47:239–245

    Article  PubMed  Google Scholar 

  6. Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA (1999) Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn Reson Med 42:911–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ (1994) Anisotropy of NMR properties of tissues. Magn Reson Med 32:592–601

    Article  CAS  PubMed  Google Scholar 

  8. Beaulieu C, Does MD, Snyder RE, Allen PS (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631

    Article  CAS  PubMed  Google Scholar 

  9. van Dusschoten D, Moonen CT, de Jager PA, Van As H (1996) Unraveling diffusion constants in biological tissue by combining Carr-Purcell-Meiboom-Gill imaging and pulsed field gradient NMR. Magn Reson Med 36:907–913

    Article  PubMed  Google Scholar 

  10. Stanisz GJ, Henkelman RM (1998) Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med 40:405–410

    Article  CAS  PubMed  Google Scholar 

  11. Travis AR, Does MD (2005) Selective excitation of myelin water using inversion-recovery-based preparations. Magn Reson Med 54:743–747

    Article  PubMed  Google Scholar 

  12. Andrews TJ, Osborne MT, Does MD (2006) Diffusion of myelin water. Magn Reson Med 56:381–385

    Article  PubMed  Google Scholar 

  13. MacKay A, Laule C (2016) Magnetic resonance of myelin water: an in vivo marker for myelin. Brain Plasticity 2:71–91 (and references cited therein)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Characterizing white matter with magnetization transfer and T(2). Magn Reson Med 42:1128–1136

    Article  CAS  PubMed  Google Scholar 

  15. Bjarnason TA, Vavasour IM, Chia CL, MacKay AL (2005) Characterization of the NMR behavior of white matter in bovine brain. Magn Reson Med 54:1072–1081

    Article  CAS  PubMed  Google Scholar 

  16. Seelig J (1997) Deuterium magnetic resonance: theory and application to lipid membranes. Quart Rev Biophys 10:353–418

    Article  Google Scholar 

  17. Shinar H, Seo Y, Navon G (1997) Discrimination between the different compartments in sciatic nerve by 2H double-quantum-filtered NMR. J Magn Reson 129:98–104

    Article  CAS  PubMed  Google Scholar 

  18. Seo Y, Shinar H, Morita Y, Navon G (1999) Anisotropic and restricted diffusion of water in the sciatic nerve: a 2H double-quantum-filtered NMR study. Magn Reson Med 42:461–466

    Article  CAS  PubMed  Google Scholar 

  19. Shinar H, Ben David T, Eliav U, Navon G (2010) Assignment of the NMR 2 H double quantum filtered signals in nerves and spinal cords to their anatomical compartments. In: Proceedings of the 18th scientific meeting, International Society for Magnetic Resonance in Medicine, Stockholm, Sweden, p 955

  20. Eliav U, Shinar H, Navon G (2020) Identification of water compartments in spinal cords by 2H double quantum filtered NMR. NMR Biomed 34:e4452

    PubMed  Google Scholar 

  21. Shinar H, Eliav U, Navon G (2006) A measurement of the magnetization exchange between the different water compartments in optic nerve. In: Proceedings of the 14th scientific meeting, International Society for Magnetic Resonance in Medicine, Seattle Washington, p 2661

  22. Eliav U, Wehrli FW, Navon G (2020) New insight into the organization of myelin water using deuterium NMR. Magn Reson Med 84:535–541

    Article  CAS  PubMed  Google Scholar 

  23. Shinar H, Navon G (2006) Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure (review). NMR Biomed 19:877–893

    Article  PubMed  Google Scholar 

  24. Sharf Y, Akselrod S, Navon G (1997) Measurement of strain exerted on the blood vessel wall by double-quantum-filtered 2H NMR. Magn Reson Med 37:69–75

    Article  CAS  PubMed  Google Scholar 

  25. Eliav U, Navon G (1999) A study of dipolar interactions and dynamics processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multiple- quantum-filtered NMR spectroscopy. J Magn Reson 137:295–310

    Article  CAS  PubMed  Google Scholar 

  26. Eliav U, Navon G (2002) Multiple quantum filtered NMR studies of the interaction between collagen and water in tendon. J Am Chem Soc 124:3125–3132

    Article  CAS  PubMed  Google Scholar 

  27. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammantion 8(110):1–13

    Google Scholar 

  28. Sunderland (1965) The connective tissues of peripheral nerves. Brain 88:841–854

    Article  CAS  PubMed  Google Scholar 

  29. Chapman GE, McLauchlan KA (1969) The hydration structure of collagen. Proc R Soc B 173:223–234

    CAS  Google Scholar 

  30. Migchelsen C, Berendsen HJC (1973) Proton exchange and molecular orientation of water in hydrated collagen fibers. An NMR study of H2O and D2O. J Chem Phys 59:296–305

    Article  CAS  Google Scholar 

  31. Saar G, Shinar H, Navon G (2007) Comparison of the effects of mechanical and osmotic pressures on the collagen fiber architecture of intact and proteoglycan-depleted articular cartilage. Eur Biophys J 36:529–538

    Article  CAS  PubMed  Google Scholar 

  32. Kuchel PW, Naumann C (2008) 2H2O quadrupolar splitting used to measure water exchange in erythrocytes. J Magn Reson 192:48–59

    Article  CAS  PubMed  Google Scholar 

  33. Eliav U, Naumann C, Navon G, Kuchel PW (2009) Double quantum transitions as the origin of the central dip in the z-spectrum of 2H2O in variably stretched gel. J Magn Reson 198:197–203

    Article  CAS  PubMed  Google Scholar 

  34. de Gennes PG (1974) The physics of liquid crystals. Oxford University Press, London

    Google Scholar 

  35. Leterrier C, Dubey P, Roy S (2017) The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci 18:713–726

    Article  CAS  PubMed  Google Scholar 

  36. Knubovets T, Shinar H, Eliav U, Navon G (1996) A 23Na multiple-quantum-filtered NMR study of the effect of the cytoskeleton conformation on the anisotropic motion of the sodium ions in red blood cells. J Magn Reson B 110:16–25

    Article  CAS  PubMed  Google Scholar 

  37. Eliav U, Xu X, Jerschow A, Navon G (2013) Optic nerve: separating compartments based on Na-23 TQF spectra and TQF-diffusion anisotropy. J Magn Reson 231:61–65

    Article  CAS  PubMed  Google Scholar 

  38. Eliav U, Navon G (2015) Evidence for alignment of sodium nuclei in spinal cord by the magnetic field. In: Experimental NMR Congress, Asilomar Conference Center, Pacific Grove, California, p 1204

  39. Foster RE, Connors BW, Waxman S (1982) Rat optic nerve: electrophysiology, pharmacology and anatomical studies during development. Brain Res 255:371–386

    Article  CAS  PubMed  Google Scholar 

  40. Sefton AJ, Horsburgh GM, Lam K (1985) The development of the optic nerve in rodents. Aust N Z J Ophthalmol 13:135–145

    Article  CAS  PubMed  Google Scholar 

  41. Hilderbrand C, Waxman SG (1984) Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J Comp Neurol 224(1):25–37

    Article  Google Scholar 

  42. Cuenca N, Fernandez E, De Juan J, Carreres J, Iniguez C (1987) Postnatal development of microtubules and neurofilaments in the rat optic nerve: a quantitative study. J Comp Neurol 263:613–617

    Article  CAS  PubMed  Google Scholar 

  43. Magoon EH, Robb RM (1981) Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophthalmol 99:655–659

    Article  CAS  PubMed  Google Scholar 

  44. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21:759–773

    Article  CAS  PubMed  Google Scholar 

  45. Morrel P, Greenfield S, Costamtion-Ceccarini E, Wisniews H (1972) Changes in the protein composition of mouse brain myelin during development. J Neurochem 19:2545–2554

    Article  Google Scholar 

  46. Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28(4–5):383–395

    Article  CAS  PubMed  Google Scholar 

  47. Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25(10):532–537

    Article  CAS  PubMed  Google Scholar 

  48. Neukomm LJ, Freeman MR (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24:515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Llobet Rosell A, Neukomm LJ (2019) Axon death signaling in Wallerian degeneration among species and in disease. Open Biol 9:190118

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8:243–252

    Article  CAS  PubMed  Google Scholar 

  51. Titelbaum DS, Frazier JL et al (1989) Wallerian degeneration and inflammation in rat peripheral nerve detected by in vivo MR imaging. AJNR Am J Neuroradiol 10:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanisz GJ, Midha R, Munro CA, Henkelman RM (2001) MR properties of rat sciatic nerve following trauma. Magn Reson Med 45:415–420

    Article  CAS  PubMed  Google Scholar 

  53. Webb S, Munro CA, Midha R, Stanisz GJ (2003) Is multicomponent T2 a good measure of myelin content in peripheral nerve? Magn Reson Med 49:638–645

    Article  CAS  PubMed  Google Scholar 

  54. Xia Y (2000) Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol 35:602–621

    Article  CAS  PubMed  Google Scholar 

  55. Birkl C, Doucette J, Fan M, Hernandez-Torres E, Rauscher A (2021) Myelin water imaging depends on white matter fiber orientation in the human brain. Magn Reson Med 85:2221–2231

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

US‐Israel Binational Science Foundation, grant number 2013253.

Author information

Authors and Affiliations

Authors

Contributions

HS: study conception and design, acquisition of data, analysis and interpretation of data, and drafting of manuscript. UE: acquisition of data, analysis, and interpretation of data. GN: study conception and design, analysis and interpretation of data, and drafting of manuscript.

Corresponding author

Correspondence to Gil Navon.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical standards

The experimental protocol in the present study was approved by Committee for Ethics of Animal Experimentation of Tel Aviv University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Deceased: Uzi Eliav December 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinar, H., Eliav, U. & Navon, G. Deuterium double quantum-filtered NMR studies of peripheral and optic nerves. Magn Reson Mater Phy 34, 889–902 (2021). https://doi.org/10.1007/s10334-021-00949-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-021-00949-6

Keywords

Navigation