Skip to main content
Log in

Preparation of heteroatom isomorphously substituted MEL zeolite membranes for pervaporation separation of dimethylformamide/water mixtures

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The recovery of dimethylformamide (DMF) by pervaporation is less energy intensive and more economical than the traditional distillation method. High/pure silica zeolite is a typical organics perm-selective material for pervaporation membrane due to its hydrophobic nature, demonstrating great potential for recovering organic components from aqueous solutions. In this study, as an attempt to further enhance the membrane hydrophobicity, titanium and zirconium-substituted MEL type zeolite membranes (Ti-silicalite-2 and Zr-silicalite-2) were synthesized on the α-Al2O3 discs by a secondary growth method. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results confirmed the isomorphous substitution of the MEL framework by Ti and Zr atoms. The effects of isomorphous substitution, feed temperature and concentration on the DMF recovery performance were investigated via systematically designed pervaporation experiments. The fluxes and separation factors both increased with the isomorphous substitution of heteroatom, as well as increasing feed temperature and decreasing feed concentration. The Ti-silicalite-2 membrane exhibited a high separation factor of 6.4 with a total flux of 0.98 kg·m−2·h−1 for a 5 wt% DMF/water feed at 343 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

effective membrane area [m2]

d:

spacing between the planes in the atomic lattice [Å]

J:

permeate flux [kg·m−2·h−1]

Kf :

Freundlich constant [-]

M:

weight of the permeate [kg]

n:

Freundlich constant [-]

p:

adsorbate pressure [mbar]

qe :

equilibrium adsorption capacity [mmol·g−1]

R2 :

correlation coefficient [-]

t:

time [h]

v:

unit cell volume [Å3]

X:

mass fraction of feed [-]

Y:

mass fraction of permeate [-]

α:

separation factor [-]

θ:

X-ray diffraction angle [°]

λ:

wavelength[nm]

BEA:

Beta-Type

CHA:

chabazite

DMF:

dimethylformamide

FAU:

faujasite

FT-IR:

Fourier transform infrared

GC:

gas chromatography

IGA:

intelligent gravimetric analyzer

LTA:

Linde-Type A

MEL:

Mobil eleven

MFI:

Mobil five

MOR:

mordenite

MW:

microwave

NaA:

Natrium A

SEM:

scanning electron microscopy

TBAOH:

tetrabutylammonium hydroxide

TBOT:

tetrabutyl titanate

TEOS:

tetraethylorthosilicate

XRD:

X-ray diffraction

ZBOT:

zirconium n-butoxide

References

  1. S. Das, A. K. Banthia and B. Adhikari, Desalination, 197, 106 (2006).

    Article  CAS  Google Scholar 

  2. S.-L. Wee, C.-T. Tye and S. Bhatia, Sep. Purif. Technol., 63, 500 (2008).

    Article  CAS  Google Scholar 

  3. X. Feng and R. Y. M. Huang, Ind. Eng. Chem. Res., 36, 1048 (1997).

    Article  CAS  Google Scholar 

  4. Q. Liu, R. D. Noble, J. L. Falconer and H. H. Funke, J. Membr. Sci., 117, 163 (1996).

    Article  CAS  Google Scholar 

  5. P. Shao and R. Y. M. Huang, J. Membr. Sci., 287, 162 (2007).

    Article  CAS  Google Scholar 

  6. A. Çalhan, S. Deniz, J. Romero and A. Hasanoğlu, Korean J. Chem. Eng., 36, 1489 (2019).

    Article  Google Scholar 

  7. J. Wang, W. Zhang, W. Li and W. Xing, Korean J. Chem. Eng., 32, 1369 (2015).

    Article  CAS  Google Scholar 

  8. Z. Wang, Q. Ge, J. Shao and Y. Yan, J. Am. Chem. Soc., 131, 6910 (2009).

    Article  CAS  Google Scholar 

  9. J. Jiang, L. Wang, L. Peng, C. Cai, C. Zhang, X. Wang and X. Gu, J. Membr. Sci., 527, 51 (2017).

    Article  CAS  Google Scholar 

  10. H. Kita, Membrane, 20, 169 (1995).

    Article  CAS  Google Scholar 

  11. M. Torres, M. Gutiérrez, V. Mugica, M. Romero and L. López, Catal. Today, 166, 205 (2011).

    Article  CAS  Google Scholar 

  12. S. Aguado, J. Gascon, D. Farrusseng, J. C. Jansen and F. Kapteijn, Micropor. Mesopor. Mater., 146, 69 (2011).

    Article  CAS  Google Scholar 

  13. F. Zhang, L. Xu, N. Hu, N. Bu, R. Zhou and X. Chen, Sep. Purif. Technol., 129, 9 (2014).

    Article  CAS  Google Scholar 

  14. Z. Chen, D. Yin, Y. Li, J. Yang, J. Lu, Y. Zhang and J. Wang, J. Membr. Sci., 369, 506 (2011).

    Article  CAS  Google Scholar 

  15. D. Korelskiy, T. Leppäjärvi, H. Zhou and M. Grahn, J. Membr. Sci., 427, 381 (2013).

    Article  CAS  Google Scholar 

  16. T. Bowen, J. Membr. Sci., 215, 235 (2003).

    Article  CAS  Google Scholar 

  17. L. Chai, H. Li, X. Zheng, J. Wang, J. Yang, J. Lu, D. Yin and Y. Zhang, J. Membr. Sci., 491, 168 (2015).

    Article  CAS  Google Scholar 

  18. W. Sun, X. Wang, J. Yang, J. Lu, H. Han, Y. Zhang and J. Wang, J. Membr. Sci., 335, 83 (2009).

    Article  CAS  Google Scholar 

  19. V. Sebastian, J. Motuzas, R. W. J. Dirrix, R. A. Terpstra, R. Mallada and A. Julbe, Sep. Purif. Technol., 75, 249 (2010).

    Article  CAS  Google Scholar 

  20. S. Li, V. A. Tuan, J. L. Falconer and R. D. Noble, Micropor. Mesopor. Mater., 58, 137 (2003).

    Article  CAS  Google Scholar 

  21. P. Chen, X. Chen, X. Chen, Z. An and H. Kita, Chin. J. Chem., 27, 1692 (2009).

    Article  CAS  Google Scholar 

  22. S. Li, V. A. Tuan, R. D. Noble and J. L. Falconer, AIChE J., 48, 269 (2002).

    Article  CAS  Google Scholar 

  23. L. Song and L. V. C. Rees, Micropor. Mesopor. Mater., 35, 301 (2000).

    Article  Google Scholar 

  24. N. Kosinov and E. J. M. Hensen, J. Membr. Sci., 447, 12 (2013).

    Article  CAS  Google Scholar 

  25. Y. Cao, Q. Zhang, R. Xu and J. Zhong, Ion Exchange & Adsorption, 32, 423 (2016).

    Google Scholar 

  26. Q. G. Wu, H. Shao, J. Zhong, Q. Zhang and R. Xu, Modern Chem. Ind., 35, 46 (2015).

    CAS  Google Scholar 

  27. H. Shao, Y. Zhou, J. Zhong, Q. G. Wu, Q. Zhang and B. Z. Yang, J. Chem. Eng. Chinese U., 28, 965 (2014).

    CAS  Google Scholar 

  28. Q. G. Wu, H. Shao, J. Zhong, Q. Zhang and R. Xu, Modern Chem. Ind., 39, 94 (2019).

    Google Scholar 

  29. G. T. Kokotailo, P. Chu, S. L. Lawton and W.M. Meier, Nature, 275, 119 (1978).

    Article  CAS  Google Scholar 

  30. Y. Cheng and S. Pan, Mater. Lett., 100, 289 (2013).

    Article  CAS  Google Scholar 

  31. D. P. Serrano, M. A. Uguina, R. Sanz, E. Castillo, A. Rodríguez, P. Sánchez, Micropor. Mesopor. Mater., 69, 197 (2004).

    Article  CAS  Google Scholar 

  32. Q. Wu, R. Xu, J. Li, Q. Zhang, J. Zhong, W. Huang and X. Gu, J. Porous Mat., 22, 1195 (2015).

    Article  CAS  Google Scholar 

  33. H. M. F. Freundlich, Z. Phys.Chem., 57, 385 (1906).

    CAS  Google Scholar 

  34. J. G. Wijmans and R. W. Baker, J. Membr. Sci., 107, 1 (1995).

    Article  CAS  Google Scholar 

  35. T. Bowen, J. Membr. Sci., 225, 165 (2003).

    Article  CAS  Google Scholar 

  36. M. Nomura, T. Yamaguchi and S.-I. Nakao, J. Membr. Sci., 144, 161 (1998).

    Article  CAS  Google Scholar 

  37. J. Z. Yang, Q. L. Liu and H. T. Wang, J. Membr. Sci., 291, 1 (2007).

    Article  CAS  Google Scholar 

  38. V. A. Tuan, S. Li, J. L. Falconer and R. D. Noble, J. Membr. Sci., 196, 111 (2002).

    Article  CAS  Google Scholar 

  39. H. Kosslick, V. A. Tuan, R. Fricke, C. Peuker, W. Pilz and W. Storek, J. Phys. Chem., 97, 796 (1993).

    Article  Google Scholar 

  40. S. Li, V. A. Tuan, R. D. Noble and J. L. Falconer, Ind. Eng. Chem. Res., 40, 6165 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Natural Science Foundation of Jiangsu Province (BK20200982), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA530001), Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and State Key Laboratory of Materials-Oriented Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhong.

Ethics declarations

The authors declare that they have no conflict of interest.

Supporting Information

11814_2021_839_MOESM1_ESM.pdf

Preparation of heteroatom isomorphously substituted MEL zeolite membranes for pervaporation separation of dimethylformamide/water mixtures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Xu, R., Shao, H. et al. Preparation of heteroatom isomorphously substituted MEL zeolite membranes for pervaporation separation of dimethylformamide/water mixtures. Korean J. Chem. Eng. 38, 2150–2156 (2021). https://doi.org/10.1007/s11814-021-0839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0839-8

Keywords

Navigation