Skip to main content
Log in

Projection Algorithms for Solving the Split Feasibility Problem with Multiple Output Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the split common fixed point problem for Bregman relatively nonexpansive operators and the split feasibility problem with multiple output sets in real reflexive Banach spaces. Using Bregman distances, we propose several new cyclic projection algorithms for solving these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001). https://doi.org/10.1142/S0219199701000524

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)

    Book  Google Scholar 

  5. Brègman, L.M.: A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 620–631 (1967). https://doi.org/10.1016/0041-5553(67)90040-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002). https://doi.org/10.1088/0266-5611/18/2/310

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 20, 103–120 (2004). https://doi.org/10.1088/0266-5611/20/1/006

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  10. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7, 151–174 (2001). https://doi.org/10.1515/JAA.2001.151

    Article  MathSciNet  MATH  Google Scholar 

  11. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006). https://doi.org/10.1155/AAA/2006/84919

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994). https://doi.org/10.1007/BF02142692

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Prob. 21, 2071–2084 (2005). https://doi.org/10.1088/0266-5611/21/6/017

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012). https://doi.org/10.1007/s11075-011-9490-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981). https://doi.org/10.1007/BF00934676

    Article  MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37, 323–339 (1996). https://doi.org/10.1080/02331939608844225

    Article  MathSciNet  MATH  Google Scholar 

  17. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99, 299–306 (2017). https://doi.org/10.1017/S000497271700017X

    Article  MathSciNet  MATH  Google Scholar 

  19. Landweber, L.: An iterative formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951). https://doi.org/10.2307/2372313

    Article  MathSciNet  MATH  Google Scholar 

  20. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Prob. 26, 055007 (2010). https://doi.org/10.1088/0266-5611/26/5/055007

    Article  MathSciNet  MATH  Google Scholar 

  22. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Kartsatos, A.G. (ed) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318. Marcel Dekker, New York (1996)

    Google Scholar 

  23. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010). https://doi.org/10.1080/01630560903499852

    Article  MathSciNet  MATH  Google Scholar 

  24. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 301–316. Springer, New York (2011)

  25. Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithms 83, 789–805 (2020). https://doi.org/10.1007/s11075-019-00703-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Reich, S., Tuyen, T.M.: Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization 69, 1013–1038 (2020). https://doi.org/10.1080/02331934.2019.1655562

    Article  MathSciNet  MATH  Google Scholar 

  27. Reich, S., Tuyen, T.M.: Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces. Optimization 69, 1913–1934 (2020). https://doi.org/10.1080/02331934.2019.1686633

    Article  MathSciNet  MATH  Google Scholar 

  28. Reich, S., Tuyen, T.M.: Two projection algorithms for solving the split common fixed point problem. J. Optim. Theory Appl. 186, 148–168 (2020). https://doi.org/10.1007/s10957-020-01702-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Reich, S., Tuyen, T.M., Ha, M.T.N.: An optimization approach to solving the split feasibility problem in Hilbert spaces. J. Global Optim. 79, 837–852 (2021). https://doi.org/10.1007/s10898-020-00964-2

  30. Reich, S., Tuyen, T.M., Ha, M.T.N.: The split feasibility problem with multiple output sets in Hilbert spaces. Optim. Lett. 14, 2335–2353 (2020). https://doi.org/10.1007/s11590-020-01555-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Reich, S., Tuyen, T.M., Trang, N.M.: Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces. Numer. Funct. Anal. Optim. 41, 778–805 (2020). https://doi.org/10.1080/01630563.2019.1681000

    Article  MathSciNet  MATH  Google Scholar 

  32. Resmerita, E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016). https://doi.org/10.1007/s11075-015-0069-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016). https://doi.org/10.1080/02331934.2015.1020943

    Article  MathSciNet  MATH  Google Scholar 

  35. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015). https://doi.org/10.1007/s00013-015-0738-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Tuyen, T.M.: A strong convergence theorem for the split common null point problem in Banach spaces. Appl. Math. Optim. 79, 207–227 (2019). https://doi.org/10.1007/s00245-017-9427-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Tuyen, T.M., Ha, N.S.: A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces. J. Fixed Point Theory Appl. 20, 140 (2018). https://doi.org/10.1007/s11784-018-0622-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Tuyen, T.M., Ha, N.S., Thuy, N.T.T.: A shrinking projection method for solving the split common null point problem in Banach spaces. Numer. Algorithms 81, 813–832 (2019). https://doi.org/10.1007/s11075-018-0572-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, F., Xu, H.-K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011). https://doi.org/10.1016/j.na.2011.03.044

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, H.-K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Prob. 22, 2021–2034 (2006). https://doi.org/10.1088/0266-5611/22/6/007

    Article  MATH  Google Scholar 

  42. Xu, H.-K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Prob. 26, 105018 (2010). https://doi.org/10.1088/0266-5611/26/10/105018

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Prob. 20, 1261–1266 (2004). https://doi.org/10.1088/0266-5611/20/4/014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. The second author was supported by the Science and Technology Fund of the Vietnam Ministry of Education and Training (B2022). Both authors are grateful to the editors and the referees for their useful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Alexandru Kristály.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Tuyen, T.M. Projection Algorithms for Solving the Split Feasibility Problem with Multiple Output Sets. J Optim Theory Appl 190, 861–878 (2021). https://doi.org/10.1007/s10957-021-01910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01910-2

Keywords

Mathematics Subject Classification

Navigation