Skip to main content
Log in

Kinetic Characteristic of the Reaction Rate Constant in Multicomponent Reaction Systems

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Principles of mathematical modeling of multicomponent reaction systems were considered with diesel fuel hydrotreating as example. The feed containing a large amount of organic sulfur components can be characterized by the following parameters from the viewpoint of improving the model adequacy and the calculation accuracy: (a) total sulfur concentration, (b) total sulfur content in pseudo-components in the feed or its narrow fractions, and (c) concentration of individual organic sulfur compounds. In cases (а) and (b), the notion of the reaction rate constant as a constant characterizing a physicochemical process degenerates, and this quantity should be considered in calculations as a kinetic characteristic taking into account the process nonuniformity in time. Examples of calculations of the hydrotreating kinetic characteristics are given for several kinds of model and real feed, and variation of the kinetic characteristic with time is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Yusubov, F.V. and Khalilov, S.P., Nauka, Tekh., Tekhnol. (Politekh. Vestn.), 2020, no. 1, pp. 454–457.

    Google Scholar 

  2. Ivashkina, E.N., Ivanchina, E.D., and Nazarova, G.Yu., Neftegaz.ru, 2019, no. 9, pp. 114–120.

    Google Scholar 

  3. Sharikov, Yu.V. and Titov, O.V., Mezhdunar. Nauch.-Issled. Zh., 2014, no. 4 (23), pp. 81–84.

    Google Scholar 

  4. Ivanchina, E.D., Ivashkina, E.N., Nazarova, G.Yu., Stebneva, V.I., Shafran, T.A., Kiseleva, S.V., Khrapov, D.V., Korotkova, N.V., and Esipenko, R.V., Katal. Prom–sti, 2017, no. 6, pp. 477–486. https//doi.org/10.18412/1816-0387-2017-6-477-486

    Google Scholar 

  5. Shvets, V.F., Suskov, Yu.P., Kozlovskii, R.A., Luganskii, A.I., and Gorbunov, A.V., Khim. Prom–st. Segodnya, 2013, no. 10, pp. 19–25.

    Google Scholar 

  6. Dolomatov, M.Yu., Nizamova, G.I., and Khairutdinova, S.S., Neftegaz. Delo. Elektron. Nauchn. Zh., 2015, no. 4, pp. 172–185. https://doi.org/10.17122/ogbus-2015-4-172-185

    Article  Google Scholar 

  7. Zhilina, V.A. and Samoilov, N.A., Neftegaz. Delo. Elektron. Nauchn. Zh., 2017, no. 2, pp. 90–109. https://doi.org/10.17122/ogbus-2017-2-90-109

    Article  Google Scholar 

  8. Samoilov, N.A., Theor. Found. Chem. Eng., 2021, vol. 55, no. 1, pp. 91–100. https://doi.org/10.1134/S0040579520060202

    Article  CAS  Google Scholar 

  9. Li, H., Yang, G., and Wang, J., China Petrol. Process. Petrochem. Technol., 2015, vol. 17, no. 2, pp. 1–8.

    Google Scholar 

  10. Krivtsova, N.I., Krivtsov, E.B., Ivanchina, E.D., and Golovko, A.K., Fundam. Issled., 2013, no. 8, pp. 640–644.

    Google Scholar 

  11. Afanas’eva, Yu.I., Krivtsova, N.I., Ivanchina, E.D., Zanin, I.K., and Tataurshchikov, A.A., Izv. Tomsk. Politekh. Univ., 2012, no. 3, pp. 121–125.

    Google Scholar 

  12. Chuzlov, V.A., Dolganov, I.M., Ivanchina, E.D., Ivashkina, E.N., Krivtsova, N.I., and Kotkova, E.P., Neftegaz.ru, 2020, no. 9 (105), pp. 121–105.

    Google Scholar 

  13. Akimov, A.S., Morozov, M.A., Fedushchak, T.A., Uimin, M.A., Petrenko, T.V., Vos’merikov, A.V., and Zhuravkov, S.P., Izv. Tomsk. Politekh. Univ., 2015, vol. 326, no. 4, pp. 91–98.

    Google Scholar 

  14. Tataurshikov, A., Ivanchina, E., Krivtcova, E., and Syskina, A., IOP Conf. Ser.: Earth Environ. Sci., 2015, vol. 27, article 012046. https://doi.org/10.1088/1755-1315/27/1/012046

  15. Al-Zeghayer, Y.S. and Jibri, B.Y., J. Eng. Res., 2006, vol. 3, no. 1, pp. 38–45. https://doi.org/10.24200/tjer.vol3iss1pp38-42

    Article  Google Scholar 

  16. Bannatham, P., Teeraboonchaikul, S., Patirupanon, T., Arkardvipart, W., Limtrakul, S., Vatanatham, T., and Ramachandran, P.A., Ind. Eng. Chem. Res., 2016, vol. 55, no. 17, pp. 4878–4886. https://doi.org/10.1021/acs.iecr.6b00382

    Article  CAS  Google Scholar 

  17. Xun, T., Shuyuan, L., Changtao, Y., Jilai, H., and Jili, H., Oil Shale, 2013, vol. 30, no. 4, pp. 517–535. https://doi.org/10.4028/www.scientific.net/AMR.798-799.12

    Article  CAS  Google Scholar 

  18. Yachen, Y., Wenbin, Ch., Guilian,W., Feng, X., Kang, Q., Yitao, L., Le, Zh., and Mingfeng, L., AIChE J., 2021, First Publ.: 18 January 2021.

  19. Charon-Revelin, N., Dulot, H., Lopez-Garcia, C., and Jose, J., Oil Gas Sci. Technol., 2010, vol. 66, no. 3, pp. 479–490. https://doi.org/10.2516/ogst/2010005

    Article  CAS  Google Scholar 

  20. Samoilov, N.A. and Zhilina, V.A., Prog. Petrochem. Sci., 2020, vol. 3, no. 5, pp. 380–381.

    Google Scholar 

  21. Samoilov, N.A. and Zhilina, V.A., Bashk. Khim. Zh., 2020, no. 4, pp. 42–48. https://doi.org/10.17122/bcj-2020-4-46-52

    Article  Google Scholar 

  22. Krivtsova, N.I., Ivanchina, E.I., Zanin, I.V., Landl’, Yu.I., and Tataurshchikov, A.A., Izv. Tomsk. Politekh. Univ., 2013, vol. 322, no. 3, pp. 83–86.

    Google Scholar 

  23. Loginov, S.A., Lebedev, B.L., Kapustin, V.M., Lugovskoi, A.I., Kurganov, V.M., and Rudyak, K.B., Neftepererab. Neftekhim., 2001, no. 11, pp. 67–74.

    Google Scholar 

  24. Elfghi Fawzi, M. and Amin, N.A.S., J. Teknologi, 2011, vol. 56, pp. 53–73.

    Google Scholar 

  25. Song, C., Catal. Today, 2003, vol. 86, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  26. Vlasova, E.N., Delly, I.V., Nuzhdin, A.L., Aleksandrov, P.V., Gerasimov, E.Yu., Aleshina, G.I., and Bukhtiyarova, G.A., Kinet. Catal., 2014, vol. 55, no. 4, pp. 481–491. https://doi.org/10.1134/S0023158414040144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Samoilov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 5, pp. 667–680 https://doi.org/10.31857/S0028242121050105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, N.A. Kinetic Characteristic of the Reaction Rate Constant in Multicomponent Reaction Systems. Pet. Chem. 61, 1040–1051 (2021). https://doi.org/10.1134/S0965544121090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121090036

Keywords:

Navigation