Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Chemical sensing based on water-gated polythiophene thin-film transistors

Abstract

Compact chemical sensors are in high demand for on-site detection of chemical substances in aqueous media. Polymer thin-film transistors (PTFTs) are among the most promising candidates for such sensors owing to their advantages. Water-gated PTFTs (WG-PTFTs) fabricated by a simple procedure can be operated at an ultralow voltage (<1 V) that avoids undesirable electrochemical reactions. Hence, we have developed WG-PTFT-based sensors using a chemical stimulus-responsive polythiophene derivative (i.e., poly[3-(5-carboxypentyl)thiophene-2,5-diyl] (P3CPT)), for which the changes in the electric double layer capacitance (EDLC) by accumulation and desorption of charged species are a key sensing mechanism. In this Focus Review, we report two examples: (1) the detection of biogenic amines such as histamine through hydrogen bonding and electrostatic interactions between the carboxylate side chain of P3CPT and targets, and (2) the highly sensitive detection of the herbicide glyphosate (GlyP) by competitive coordination binding among P3CPT, Cu2+, and GlyP. More importantly, in comparison to fluorescent chemical sensors fabricated using the same materials, WG-PTFT-based sensors show a lower detection limit. This result can be explained by the synergism of “intra” and “inter” molecular wire effects that originate from the aggregation of P3CPT under a field effect. Therefore, we believe that the sensing strategy developed here based on WG-PTFTs can contribute to improving the quality of life in real-world scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horowitz G. Organic field-effect transistors. Adv Mater. 1998;10:365–77.

    Article  CAS  Google Scholar 

  2. Koezuka H, Tsumura A, Ando T. Field-effect transistor with polythiophene thin film. Synth Met. 1987;18:699–704.

    Article  CAS  Google Scholar 

  3. Tsumura A, Koezuka H, Ando T. Polythiophene field-effect transistor: Its characteristics and operation mechanism. Synth Met. 1988;25:11–23.

    Article  CAS  Google Scholar 

  4. Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater. 2002;14:99–117.

    Article  CAS  Google Scholar 

  5. Allard S, Forster M, Souharce B, Thiem H, Scherf U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed. 2008;47:4070–98.

    Article  CAS  Google Scholar 

  6. Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, et al. Organic field-effect transistor-based flexible sensors. Chem Soc Rev. 2020;49:3423–60.

    Article  CAS  PubMed  Google Scholar 

  7. Yao Z-F, Wang J-Y, Pei J. High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem Sci. 2021;12:1193–205.

    Article  CAS  Google Scholar 

  8. Afraj SN, He G-Y, Lin C-Y, Velusamy A, Huang C-Y, Lin P-S, et al. Solution-processable multifused thiophene small molecules and conjugated polymer semiconducting blend for organic field effect transistor application. Adv Mater Technol. 2021;6:2001028.

    Article  CAS  Google Scholar 

  9. Han X, Chen X, Tang X, Chen Y-L, Liu J-H, Shen Q-D. Flexible polymer transducers for dynamic recognizing physiological signals. Adv Funct Mater. 2016;26:3640–8.

    Article  CAS  Google Scholar 

  10. Schwartz G, Tee BC-K, Mei J, Appleton AL, Kim DH, Wang H, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun. 2013;4:1859.

    Article  PubMed  Google Scholar 

  11. Sugiyama M, Uemura T, Kondo M, Akiyama M, Namba N, Yoshimoto S, et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat Electron. 2019;2:351–60.

    Article  Google Scholar 

  12. Namdas EB, Samuel IDW, Shukla D, Meyer DM, Sun Y, Hsu BBY, et al. Organic light emitting complementary inverters. Appl Phys Lett. 2010;96:043304.

    Article  Google Scholar 

  13. Yokota T, Fukuda K, Someya T. Recent progress of flexible image sensors for biomedical applications. Adv Mater. 2021;33:2004416.

    Article  CAS  Google Scholar 

  14. Minami T, Minamiki T, Sasaki Y. Development of enzymatic sensors based on extended-gate-type organic field-effect transistors. Electrochemistry 2018;86:303–8.

    Article  CAS  Google Scholar 

  15. Minami T, Sasaki Y, Minamiki T, Wakida S-I, Kurita R, Niwa O, et al. Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosens Bioelectron. 2016;81:87–91.

    Article  CAS  PubMed  Google Scholar 

  16. Minami T, Sato T, Minamiki T, Fukuda K, Kumaki D, Tokito S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens Bioelectron. 2015;74:45–8.

    Article  CAS  PubMed  Google Scholar 

  17. Minamiki T, Tokito S, Minami T. Fabrication of a flexible biosensor based on an organic field-effect transistor for lactate detection. Anal Sci. 2019;35:103–6.

    Article  CAS  PubMed  Google Scholar 

  18. Minamiki T, Sasaki Y, Su S, Minami T. Development of polymer field-effect transistor-based immunoassays. Polym J. 2019;51:1–9.

    Article  CAS  Google Scholar 

  19. Minamiki T, Minami T, Sasaki Y, Wakida S-I, Kurita R, Niwa O, et al. Label-free detection of human glycoprotein (CgA) using an Extended-Gated Organic Transistor-Based Immunosensor. Sensors 2016;16:2033.

    Article  PubMed Central  Google Scholar 

  20. Minamiki T, Minami T, Sasaki Y, Kurita R, Niwa O, Wakida S-I, et al. An organic field-effect transistor with an extended-gate electrode capable of detecting human immunoglobulin A. Anal Sci. 2015;31:725–8.

    Article  CAS  PubMed  Google Scholar 

  21. Macchia E, Picca RA, Manoli K, Franco CD, Blasi D, Sarcina L, et al. About the amplification factors in organic bioelectronic sensors. Mater Horiz. 2020;7:999–1013.

    Article  CAS  Google Scholar 

  22. Li H, Shi W, Song J, Jang H-J, Dailey J, Yu J, et al. Chemical and biomolecule sensing with organic field-effect transistors. Chem Rev. 2019;119:3–35.

    Article  CAS  PubMed  Google Scholar 

  23. Mahesh K, Karpagam S, Pandian K. How to design donor–acceptor based heterocyclic conjugated polymers for applications from organic electronics to sensors. Top Curr Chem. 2019;377:12.

    Article  CAS  Google Scholar 

  24. Higgins SG, Lo Fiego A, Patrick I, Creamer A, Stevens MM. Organic bioelectronics: using highly conjugated polymers to interface with biomolecules, cells, and tissues in the human body. Adv Mater Technol. 2020;5:2000384.

    Article  CAS  Google Scholar 

  25. Gibson TD. Biosensors: the stability problem. Analusis. 1999;27:630–8.

    Article  CAS  Google Scholar 

  26. Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors. ACS Sens. 2019;4:2571–87.

    Article  CAS  PubMed  Google Scholar 

  27. Minamiki T, Minami T, Kurita R, Niwa O, Wakida S-I, Fukuda K, et al. Accurate and reproducible detection of proteins in water using an extended-gate type organic transistor biosensor. Appl Phys Lett. 2014;104:243703.

    Article  Google Scholar 

  28. Minamiki T, Minami T, Chen Y-P, Mano T, Takeda Y, Fukuda K, et al. Flexible organic thin-film transistor immunosensor printed on a one-micron-thick film. Commun Mater. 2021;2:8.

    Article  Google Scholar 

  29. Minami T, Sasaki Y, Minamiki T, Koutnik P, Anzenbacher P, Tokito S. A mercury(II) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chem Commun. 2015;51:17666–8.

    Article  CAS  Google Scholar 

  30. Minami T, Minamiki T, Tokito S. Detection of mercury(II) ion in water using an organic field-effect transistor with a cysteine-immobilized gold electrode. Jpn J Appl Phys. 2016;55:04EL02.

    Article  Google Scholar 

  31. Sasaki Y, Minami T, Minamiki T, Tokito S. An organic transistor-based electrical assay for copper(II) in water. Electrochemistry. 2017;85:775–8.

    Article  CAS  Google Scholar 

  32. Minami T, Minamiki T, Hashima Y, Yokoyama D, Sekine T, Fukuda K, et al. An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water. Chem Commun. 2014;50:15613–5.

    Article  CAS  Google Scholar 

  33. Didier P, Lobato-Dauzier N, Clément N, Genot AJ, Sasaki Y, Leclerc E, et al. Microfluidic system with extended-gate-type organic transistor for real-time glucose monitoring. ChemElectroChem. 2020;7:1332–6.

    Article  CAS  Google Scholar 

  34. Minami T, Minamiki T, Tokito S. An anion sensor based on an organic field effect transistor. Chem Commun. 2015;51:9491–4.

    Article  CAS  Google Scholar 

  35. Didier P, Minami T. Non-enzymatic lactate detection by an extended-gate type organic field effect transistor. Semicond Sci Technol. 2020;35:11LT02.

    Article  CAS  Google Scholar 

  36. Minami T, Minamiki T, Tokito S. Electric detection of phosphate anions in water by an extended-gate-type organic field-effect transistor functionalized with a zinc(II)–dipicolylamine derivative. Chem Lett. 2016;45:371–3.

    Article  CAS  Google Scholar 

  37. Minamiki T, Minami T, Yokoyama D, Fukuda K, Kumaki D, Tokito S. Extended-gate organic field-effect transistor for the detection of histamine in water. Jpn J Appl Phys. 2015;54:04DK02.

    Article  Google Scholar 

  38. Zhou Q, Wang M, Yagi S, Minami T. Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection. Nanoscale. 2021;13:100–7.

    Article  CAS  PubMed  Google Scholar 

  39. Asano K, Aiko M, Yamanashi Y, Sasaki Y, Nakahara K, Minamiki T, et al. An extended-gate type organic transistor with a solution-processable small molecule semiconductor capable of detecting glutathione in water. Jpn J Appl Phys. 2020;59:SGGG07.

    Article  CAS  Google Scholar 

  40. Minamiki T, Minami T, Koutnik P, Anzenbacher P, Tokiko S. Antibody- and label-free phosphoprotein sensor device based on an organic transistor. Anal Chem. 2016;88:1092–5.

    Article  CAS  PubMed  Google Scholar 

  41. Minamiki T, Kubota R, Sasaki Y, Asano K, Minami T. Protein assays on organic electronics: rational device and material designs for organic transistor-based sensors. ChemistryOpen. 2020;9:573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ono S, Seki S, Hirahara R, Tominari Y. Takeya J. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett. 2008;92:103313.

    Article  Google Scholar 

  43. Matsumi N, Sugai K, Miyake M, Ohno H. Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 2006;39:6924–7.

    Article  CAS  Google Scholar 

  44. Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD. Ion gel gated polymer thin-film transistors. J Am Chem Soc. 2007;129:4532–3.

    Article  CAS  PubMed  Google Scholar 

  45. Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci USA. 2011;108:15069–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kergoat L, Herlogsson L, Braga D, Piro B, Pham M-C, Crispin X, et al. A water-gate organic field-effect transistor. Adv Mater. 2010;22:2565–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kergoat L, Piro B, Berggren M, Pham M-C, Yassar A, Horowitz G. DNA detection with a water-gated organic field-effect transistor. Org Electron. 2012;13:1–6.

    Article  CAS  Google Scholar 

  48. Cotrone S, Ambrico M, Toss H, Angione D, Magliulo M, Mallardi A, et al. Phospholipid film in electrolyte-gated organic field-effect transistors. Org Electron. 2012;13:638–44.

    Article  CAS  Google Scholar 

  49. Sensi M, Berto M, Gentile S, Pinti M, Conti A, Pellacani G, et al. Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors. Chem Commun. 2021;57:367–70.

    Article  CAS  Google Scholar 

  50. Minamiki T, Hashima Y, Sasaki Y, Minami T. An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water. Chem Commun. 2018;54:6907–10.

    Article  CAS  Google Scholar 

  51. Sasaki Y, Asano K, Minamiki T, Zhang Z, Takizawa S-Y, Kubota R, et al. A water-gated organic thin-film transistor for glyphosate detection: a comparative study with fluorescence sensing. Chem Eur J. 2020;26:14525–9.

    Article  CAS  PubMed  Google Scholar 

  52. Swager TM. The molecular wire approach to sensory signal amplification. Acc Chem Res. 1998;31:201–7.

    Article  CAS  Google Scholar 

  53. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100:2537–74.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev. 2007;107:1339–86.

    Article  CAS  PubMed  Google Scholar 

  55. Sakai R. Conjugated polymers applicable to colorimetric and fluorescent anion detection. Polym J. 2016;48:59–65.

    Article  CAS  Google Scholar 

  56. Minami T, Kubo Y. Fluorescence sensing of phytate in water using an isothiouronium-attached polythiophene. Chem Asian J. 2010;5:605–11.

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Shi G. Polythiophene-based optical sensors for small molecules. ACS Appl Mater Interfaces. 2013;5:4503–10.

    Article  CAS  PubMed  Google Scholar 

  58. Del Valle J, Gantz I. Novel insights into histamine H2 receptor biology. Am J Physiol Gastrointest Liver Physiol. 1997;273:G987–96.

    Article  Google Scholar 

  59. Francis T, Graf A, Hodges K, Kennedy L, Hargrove L, Price M, et al. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings. Hepatobiliary Surg Nutr. 2013;2:216–26.

    PubMed  PubMed Central  Google Scholar 

  60. Ho V, Boudouris BW, Segalman RA. Tuning polythiophene crystallization through systematic side chain functionalization. Macromolecules. 2010;43:7895–9.

    Article  CAS  Google Scholar 

  61. Tada A, Geng Y, Nakamura M, Wei Q, Hashimoto K, Tajima K. Interfacial modification of organic photovoltaic devices by molecular self-organization. Phys Chem Chem Phys. 2012;14:3713–24.

    Article  CAS  PubMed  Google Scholar 

  62. Kim ChenL, Gong, Osada Y. Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. Macromolecules. 1999;32:3964–9.

    Article  CAS  Google Scholar 

  63. Trefalt G, Behrens SH, Borkovec M. Charge regulation in the electrical double layer: ion adsorption and surface Interactions. Langmuir. 2016;32:380–400.

    Article  CAS  PubMed  Google Scholar 

  64. Kane V, Mulvaney P. Double-layer interactions between self-assembled monolayers of ω-mercaptoundecanoic acid on gold surfaces. Langmuir. 1998;14:3303–11.

    Article  CAS  Google Scholar 

  65. FDA: Fish and fisheries products hazards and controls guidance. https://www.fda.gov/food/seafood-guidance-documents-regulatory-information/fish-and-fishery-products-hazards-and-controls (2020).

  66. Taylor SL, Eitenmiller RR. Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol. 1986;17:91–128.

    Article  CAS  PubMed  Google Scholar 

  67. Taylor SL, Guthertz LS, Tillman MLF, Lieber ER. Histamine production by food-borne bacterial species. J Food Saf. 1978;1:173–87.

    Article  CAS  Google Scholar 

  68. Eitenmiller RR, Wallis JW, Orr JH, Phillips RD. Production of histidine decarboxylase and histamine by proteus morganii. J Food Prot. 1981;44:815–20.

    Article  CAS  PubMed  Google Scholar 

  69. Draisci R, Volpe G, Lucentini L, Cecilia A, Federico R, Palleschi G. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem. 1998;62:225–32.

    Article  CAS  Google Scholar 

  70. Lange J, Wittmann C. Enzyme sensor array for the determination of biogenic amines in food samples. Anal Bioanal Chem. 2002;372:276–83.

    Article  CAS  PubMed  Google Scholar 

  71. Torre R, Costa-Rama E, Lopes P, Nouwes HPA, Delerue-Matos C. Amperometric enzyme sensor for the rapid determination of histamine. Anal Methods. 2019;11:1264–9.

    Article  CAS  Google Scholar 

  72. Minami T, Sato T, Minamiki T, Tokito S. An extended-gate type organic FET based biosensor for detecting biogenic amines in aqueous solution. Anal Sci. 2015;31:721–4.

    Article  CAS  PubMed  Google Scholar 

  73. Nelson TL, O’Sullivan C, Greene NT, Maynor MS, Lavigne JJ. Cross-reactive conjugated polymers: analyte-specific aggregative response for structurally similar diamines. J Am Chem Soc. 2006;128:5640–1.

    Article  CAS  PubMed  Google Scholar 

  74. IARC: IARC monograph on glyphosate. https://www.iarc.who.int/featured-news/media-centre-iarc-news-glyphosate (2015).

  75. Clarke ET, Rudolf PR, Martell AE, Clearfield A. Structural investigation of the Cu(II) chelate of N-phosphonomethylglycine. X-ray crystal structure of Cu(II) [O2CCH2NHCH2PO3]·Na(H2O)3.5. Inorg Chim Acta. 1989;164:59–63.

    Article  CAS  Google Scholar 

  76. Gui M, Jiang J, Wang X, Yan Y, Li S, Xiao X, et al. Copper ion-mediated glyphosate detection with N-heterocycle based polyacetylene as a sensing platform. Sens Actuators B Chem. 2017;243:696–703.

    Article  CAS  Google Scholar 

  77. Wang Z, Wang Y, Xu D, Kong ES-W, Zhang Y. Facile synthesis of dispersible spherical polythiophene nanoparticles by copper(II) catalyzed oxidative polymerization in aqueous medium. Synth Met. 2010;160:921–6.

    Article  CAS  Google Scholar 

  78. Minami T, Nishiyabu R, Iyoda M, Kubo Y. Shape-controllable gold nanocrystallization using an amphiphilic polythiophene. Chem Commun. 2010;46:8603–5.

    Article  CAS  Google Scholar 

  79. Frampton MJ, Anderson HL. Insulated molecular wires. Angew Chem Int Ed. 2007;46:1028–64.

    Article  CAS  Google Scholar 

  80. Pan C, Sugiyasu K, Aimi J, Sato A, Takeuchi M. Picket-fence polythiophene and its diblock copolymers that afford microphase separations comprising a stacked and an isolated polythiophene ensemble. Angew Chem Int Ed. 2014;53:8870–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TM thanks JSPS KAKENHI (Grant Nos. JP21H01780, JP20K21204, and JP20H05207) and JST CREST (Grant No. JPMJCR2011). We thank AGC Inc. for supplying Cytop®.

Author information

Authors and Affiliations

Authors

Contributions

TM conducted the project and wrote the manuscript. WT and KA participate in writing the manuscript.

Corresponding author

Correspondence to Tsuyoshi Minami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, T., Tang, W. & Asano, K. Chemical sensing based on water-gated polythiophene thin-film transistors. Polym J 53, 1315–1323 (2021). https://doi.org/10.1038/s41428-021-00537-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00537-4

Search

Quick links