Skip to main content
Log in

Descriptor Form Design Methodology for Polynomial Fuzzy-Model-Based Control Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a descriptor form design methodology for polynomial fuzzy-model-based (FMB) control systems. To begin with, the closed-loop polynomial fuzzy system is cast into the descriptor form representation. Applying the commonly used Lyapunov function of the polynomial fuzzy model, the first sum-of-squares (SOS) based stabilization control design approach is proposed. Through the redundancy of descriptor form representation, polynomial fuzzy slack matrices are brought into the stabilization analysis for relaxation. Applying fuzzy slack matrices for the stabilization analysis causes the double fuzzy summation problem which can be seen as the copositivity problem. Therefore, the copositivity relaxation is applied in the stabilization control design. In addition, for the special cases that all membership functions are functions of the states being not related to the inputs, the second SOS-based stabilization control design approach is proposed by applying a novel fuzzy Lyapunov function. As the novel fuzzy Lyapunov function contains the commonly used Lyapunov function as a special case, the second design approach is guaranteed to be less conservative than the first one. Since the novel fuzzy Lyapunov function is applied, the time derivatives of membership functions are necessary to be considered in the stabilization analysis. Hence, the sector nonlinearity technique is applied to deal with the rest part of the membership function time derivative after extracting the polynomial common factors. Finally, three examples are given to shown the effectiveness and relaxation of the proposed descriptor form control design methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC–15, 116–132 (1985)

    Article  Google Scholar 

  2. Chen, Y.J., Ohtake, H., Tanaka, K., Wang, W.J., Wang, H.O.: Relaxed stabilization criterion for discrete T–S fuzzy systems by minimum type piecewise non-quadratic Lyapunov function. IET Control Theory Appl. 6, 1918–1925 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y.J., Tanaka, M., Inoue, K., Ohtake, H., Tanaka, K., Guerra, T.M., Kruszewski, A., Wang, H.O.: A non-monotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems. IET Control Theory Appl. 8, 1716–1722 (2014)

    Article  MathSciNet  Google Scholar 

  4. Vu, V.P., Wang, W.J.: Observer synthesis for uncertain Takagi–Sugeno fuzzy systems with multiple output matrices. IET Control Theory Appl. 10, 151–161 (2016)

    Article  MathSciNet  Google Scholar 

  5. Wu, Y., Jiang, B., Shi, P.: Incipient fault diagnosis for T–S fuzzy systems with application to high-speed railway traction devices. IET Control Theory Appl. 10, 2286–2297 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cao, K., Gao, X., Lam, H.K., Vasilakos, A.: \(H_{\infty }\) fuzzy PID control synthesis for Takagi–Sugeno fuzzy systems. IET Control Theory Appl. 10, 607–616 (2016)

    Article  MathSciNet  Google Scholar 

  7. Vu, V.P., Wang, W.J.: Robust observer synthesis for the uncertain large-scale T–S fuzzy system. IET Control Theory Appl. 13, 134–145 (2019)

    Article  MathSciNet  Google Scholar 

  8. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4, 14–23 (1996)

    Article  Google Scholar 

  9. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6, 250–265 (1998)

    Article  Google Scholar 

  10. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  11. Tanaka, K., Ohtake, H., Wang, H.O.: A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions. IEEE Trans. Fuzzy Syst. 15, 333–341 (2007)

    Article  Google Scholar 

  12. Guelton, K., Bouarar, T., Manamanni, N.: Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi–Sugeno systems—a descriptor redundancy approach. Fuzzy Sets Syst. 160, 2796–2811 (2009)

    Article  MathSciNet  Google Scholar 

  13. Chadli, M., Aouaouda, S., Karimi, H.R., Shi, P.: Robust fault tolerant tracking controller design for a VTOL aircraft. J. Frankl. Inst. 350, 2627–2645 (2013)

    Article  MathSciNet  Google Scholar 

  14. Aouaouda, S., Chadli, M., Karimi, H.R.: Robust static output-feedback controller design against sensor failure for vehicle dynamics. IET Control Theory Appl. 8, 728–737 (2014)

    Article  MathSciNet  Google Scholar 

  15. Taniguchi, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8, 442–452 (2000)

    Article  Google Scholar 

  16. Chen, Y.J., Wang, W.J., Chang, C.L.: Guaranteed-cost control for an overhead crane with practical constraints: fuzzy descriptor system approach. Eng. Appl. Artif. Intell. 22, 639–645 (2009)

    Article  Google Scholar 

  17. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17, 911–922 (2009)

    Article  Google Scholar 

  18. Balas, G., Packard, A., Seiler, P., Topcu, U.: Robustness analysis of nonlinear systems. Aerosp. Eng. Mech. (2009). http://www.aem.umn.edu/AerospaceControl/. Accessed July 2013

  19. Sala, A., Ariño, C.: Polynomial fuzzy models for nonlinear control: a Taylor series approach. IEEE Trans. Fuzzy Syst. 17, 1284–1295 (2009)

    Article  Google Scholar 

  20. Tanaka, K., Ohtake, H., Wang, H.O.: Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach. IEEE Trans. Syst. Man Cybern. B 39, 561–567 (2009)

    Article  Google Scholar 

  21. Narimani, M., Lam, H.K.: SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions. IEEE Trans. Fuzzy Syst. 18, 862–871 (2010)

    Article  Google Scholar 

  22. Chen, Y.J., Tanaka, M., Tanaka, K., Ohtake, H., Wang, H.O.: Discrete polynomial fuzzy systems control. IET Control Theory Appl. 8, 288–296 (2014)

    Article  MathSciNet  Google Scholar 

  23. Yu, G.R., Huang, Y.C., Cheng, C.Y.: Robust \(H_{\infty }\) controller design for polynomial fuzzy control systems by sum-of-squares approach. IET Control Theory Appl. 10, 1684–1695 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lo, J.C., Lin, C.: Polynomial fuzzy observed-state feedback stabilization via homogeneous Lyapunov methods. IEEE Trans. Fuzzy Syst. 26, 2873–2885 (2018)

    Article  Google Scholar 

  25. Chen, Y.J., Tanaka, K., Tanaka, M.S., Tsai, S.H., Wang, H.O.: A novel path-following-method-based polynomial fuzzy control design. IEEE Trans. Cybern. 51(6), 1–11 (2019)

    Google Scholar 

  26. Saenz, J.M., Tanaka, M., Tanaka, K.: Relaxed stabilization and disturbance attenuation control synthesis conditions for polynomial fuzzy systems. IEEE Trans. Cybern. 51(4), 1–14 (2019)

    Google Scholar 

  27. Li, X., Mehran, K., Lam, H.K., Xiao, B., Bao, Z.: Stability analysis of discrete-time positive polynomial-fuzzy-model-based control systems through fuzzy co-positive Lyapunov function with bounded control. IET Control Theory Appl. 14, 233–243 (2020)

    Article  Google Scholar 

  28. Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems. IEEE Trans. Fuzzy Syst. 14, 386–397 (2006)

    Article  Google Scholar 

  29. Xiao, B., Lam, H.K., Li, H.: Stabilization of interval Type-2 polynomial-fuzzy-model-based control systems. IEEE Trans. Fuzzy Syst. 25, 205–217 (2016)

    Article  Google Scholar 

  30. Mohammadzadeh, A., Sabzalian, M.H., Zhang, W.: An interval Type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice. IEEE Trans. Fuzzy Syst. 28, 1940–1950 (2020)

    Article  Google Scholar 

  31. Mohammadzadeh, A., Zhang, W.: Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn. 95, 1661–1672 (2019)

    Article  Google Scholar 

  32. Mohammadzadeh, A., Kayacan, E.: A novel fractional-order type-2 fuzzy control method for online frequency regulation in AC microgrid. Eng. Appl. Artif. Intell. 90, 103483 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology of Taiwan, ROC, under Grants MOST 109-2221-E-305-008, in part by the University System of Taipei Joint Research Program under Grant USTP-NTUT-NTPU-109-02. This work was also supported in part by Grant-in-Aids for Scientific Research (C) 19K12134 from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jen Chen.

Appendices

Appendices

1.1 The Transform Matrix

Since \(\hat{\varvec{x}}(\varvec{x})\) is a vector whose entries are all monomials with the property of \(\hat{\varvec{x}}(\varvec{x})=0\) iff \(\varvec{x}=0\), the transformation matrix \(\varvec{T}(\varvec{x})\) can always be obtained such that \(\hat{{{\varvec{x}}}}({{\varvec{x}}})={{\varvec{T}}}({{\varvec{x}}}){{\varvec{x}}}\). For the case of \(\hat{{{\varvec{x}}}}({{\varvec{x}}})={{\varvec{x}}}\), \({{\varvec{T}}}({{\varvec{x}}})= {{\varvec{I}}}\) is obtained. Moreover, with \({{\varvec{x}}}=[x_{1} \ x_{2}]^{T}\), the following examples can be obtained:

$$\begin{aligned}&\hat{{{\varvec{x}}}}({{\varvec{x}}})=\left[ \begin{array}{c}x^{2}_{1} \\ x^{2}_{2}\end{array}\right] \quad \text {with} \quad {{\varvec{T}}}({{\varvec{x}}}) = \left[ \begin{array}{cc}x_{1} &{} 0 \\ 0 &{} x_{2}\end{array}\right] , \end{aligned}$$
$$\begin{aligned}&\hat{{{\varvec{x}}}}({{\varvec{x}}})=\left[ \begin{array}{c}x^4_{1} \\ x^{2}_{2}\end{array}\right] \quad \text {with} \quad {{\varvec{T}}}({{\varvec{x}}}) = \left[ \begin{array}{cc}x^3_{1} &{} 0 \\ 0 &{} x_{2}\end{array}\right] , \end{aligned}$$
$$\begin{aligned}&\hat{{{\varvec{x}}}}({{\varvec{x}}})=\left[ \begin{array}{c}x^4_{1} \\ x^4_{2}\end{array}\right] \quad \text {with} \quad {{\varvec{T}}}({{\varvec{x}}}) = \left[ \begin{array}{cc}x^3_{1} &{} 0 \\ 0 &{} x^3_{2}\end{array}\right] . \end{aligned}$$

1.2 Decomposition of Membership Function Time Derivative

For the cases of all membership functions being functions of the states with no relation to the inputs (i.e. \(h_{\rho }(\varvec{z})= h_{\rho }(\tilde{\varvec{x}}) \ \forall \rho\)), the membership function time derivative can be represented as

$$\begin{aligned} \dot{h}_{\rho} (\tilde{\varvec{x}})&= \frac{\partial h_{\rho} (\tilde{\varvec{x}})}{\partial {{\varvec{x}}}} \dot{{{\varvec{x}}}} \\&=\frac{\partial h_{\rho} (\tilde{\varvec{x}})}{\partial {{\varvec{x}}}} \sum _{i=1}^{r}h_{i}(\tilde{\varvec{x}}) {{\varvec{A}}}_{i}({{\varvec{x}}})\hat{{{\varvec{x}}}}({{\varvec{x}}}). \end{aligned}$$
(58)

By extracting the polynomial common factors \(O_{\rho} ({{\varvec{x}}})\) from \(\dot{h}_{\rho} (\tilde{\varvec{x}})\), (58) can be further rewritten as:

$$\dot{h}_{\rho} (\tilde{\varvec{x}})=y_{\rho} ({{\varvec{x}}})O_{\rho} ({{\varvec{x}}}),$$
(59)

where \(y_{\rho} ({{\varvec{x}}})\) is the rest part of \(\dot{h}_{\rho} (\tilde{\varvec{x}})\) after extracting \(O_{\rho} ({{\varvec{x}}})\). By applying the sector nonlinearity technique to \(y_{\rho} ({{\varvec{x}}})\), it can be obtained that

$$y_{\rho} ({{\varvec{x}}})=\sum _{m=1}^{2} \omega _{\rho m} (\varvec{x}) C_{\rho m},$$
(60)

where

$$\begin{aligned}&C_{\rho 1}= \max \limits _{\varvec{x}\in D_{\text {op}}} \ y_{\rho} ({{\varvec{x}}}), \quad C_{\rho 2}= \min \limits _{\varvec{x}\in D_{\text {op}}} \ y_{\rho} ({{\varvec{x}}}) \\&\omega _{\rho 1} (\varvec{x}) =\frac{y_{\rho} ({{\varvec{x}}})-C_{\rho 2}}{C_{\rho 1}-C_{\rho 2}} ,\quad \omega _{\rho 2} (\varvec{x}) =\frac{C_{\rho 1}-y_{\rho} ({{\varvec{x}}})}{C_{\rho 1}-C_{\rho 2}} \end{aligned}$$

with the following properties:

$$\omega _{\rho m} (\varvec{x}) > 0, \ \sum _{m=1}^{2} \omega _{\rho m} (\varvec{x}) =1.$$

By substituting (60) into (59), the decomposition of the membership function time derivative can be implemented as

$$\dot{h}_{\rho} (\tilde{\varvec{x}})=\sum _{m=1}^{2} \omega _{\rho m} (\varvec{x}) \mu _{\rho m}({{\varvec{x}}})$$

with \(\mu _{\rho m}({{\varvec{x}}})= C_{\rho m}O_{\rho} ({{\varvec{x}}})\).

For example, for \(\hat{{{\varvec{x}}}}({{\varvec{x}}})=\varvec{x}=[x_{1} \ x_{2}]^{T}\), consider a polynomial fuzzy model (2) of three rules with the following system matrices and membership functions:

$$\begin{aligned}&A_{1}=\left[ \begin{array}{cc}x_{1}^{2}+x_{2}^{2} &{} x_{1}+x_{2} \\ 0.25 &{} 0.25\end{array}\right] , \ A_{2}=\left[ \begin{array}{cc}3x_{1}x_{2} &{} -x_{1}+x_{2} \\ 0.25 &{} 0.25\end{array}\right] , \\&A_3=\left[ \begin{array}{cc}-1+x_{1}+x_{1}^{2} &{} -4 \\ 0.25 &{} 0.25\end{array}\right] \\&B_{1}=\left[ \begin{array}{c}1 \\ 0\end{array}\right] , \ B_{2}=\left[ \begin{array}{c}8 \\ 0\end{array}\right] , \ B_3=\left[ \begin{array}{c}x_{2}^{2} \\ 0\end{array}\right] \\&h_{1}(x_{2})=\frac{1+\sin(x_{2})}{3}, \ h_{2}(x_{2})= h_3(x_{2})=\frac{2-\sin(x_{2})}{6}. \end{aligned}$$

The time derivative of \(h_{1}(x_{2})\) can be obtained as

$$\begin{aligned} \dot{h}_{1}(x_{2})&= \frac{\partial h_{1} (x_{2})}{\partial x_{2}} \dot{x}_{2} \\&=\frac{\partial h_{1} (x_{2})}{\partial x_{2}} \sum _{i=1}^{r}h_{i}(x_{2}) {{\varvec{A}}}^{2}_{i}({{\varvec{x}}})\hat{{{\varvec{x}}}}({{\varvec{x}}}) \\&=\frac{\cos(x_{2})}{3} \times 0.25 \times (x_{1}+x_{2}). \end{aligned}$$

Rewrite \(\dot{h}_{1}(x_{2})\) into the form of (59), it can be obtained that

$$O_{1}({{\varvec{x}}})=\frac{x_{1}+x_{2}}{12}, \ y_{1}({{\varvec{x}}})=\cos(x_{2}).$$

Assume that the polynomial fuzzy model are with the following operation domain:

$$D_{op}=\{{{\varvec{x}}}: -\pi \le x_{k} \le \pi , \ k=1, \ 2\}.$$

By applying the sector nonlinearity technique to \(y_{1}({{\varvec{x}}})\), it can be obtained that

$$y_{1}({{\varvec{x}}})=\sum _{m=1}^{2} \omega _{1 m} (\varvec{x}) C_{1 m},$$

where

$$\begin{aligned} &C_{1 1}= \max \limits _{\varvec{x}\in D_{op}} \ y_{1}({{\varvec{x}}})=1, \quad C_{1 2}= \min \limits _{\varvec{x}\in D_{op}} \ y_{1}({{\varvec{x}}})=-1 \\&\omega _{1 1} (\varvec{x}) =\frac{y_{1}({{\varvec{x}}})-C_{1 2}}{C_{1 1}-C_{1 2}} ,\quad \omega _{1 2} (\varvec{x}) =\frac{C_{1 1}-y_{1}({{\varvec{x}}})}{C_{1 1}-C_{1 2}}. \end{aligned}$$

Finally, the decomposition of \(\dot{h}_{1}(x_{2})\) can be implemented as

$$\dot{h}_{1}(\tilde{\varvec{x}})=\sum _{m=1}^{2} \omega _{1 m} (\varvec{x}) \mu _{1 m}({{\varvec{x}}})$$

with

$$\begin{aligned}&\mu _{1 1}({{\varvec{x}}})=C_{11}O_{1}({{\varvec{x}}})=\frac{x_{1}+x_{2}}{12}, \\&\mu _{1 2}({{\varvec{x}}})=C_{12}O_{1}({{\varvec{x}}})=-\frac{x_{1}+x_{2}}{12}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, FN., Chen, YJ., Tanaka, M. et al. Descriptor Form Design Methodology for Polynomial Fuzzy-Model-Based Control Systems. Int. J. Fuzzy Syst. 24, 841–854 (2022). https://doi.org/10.1007/s40815-021-01143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01143-5

Keywords

Navigation