Skip to main content

Advertisement

Log in

Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is one of the main causes of death and disability in both civilian and military population. TBI may occur via a variety of etiologies, all of which involve trauma to the head. However, the neuroprotective drugs which were found to be very effective in animal TBI models failed in phase II or phase III clinical trials, emphasizing a compelling need to review the current status of animal TBI models and therapeutic strategies. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. However, due to the ethical limitations, it is difficult to precisely emulate the TBI mechanisms that occur in humans. Therefore, many animal models with varying severity and mechanisms of brain injury have been developed, and each model has its own pros and cons in its implementation for TBI research. These challenges pose a need for study of continued TBI mechanisms, brain injury severity, duration, treatment strategies, and optimization of animal models across the neurotrauma research community. The aim of this review is to discuss (1) causes of TBI, (2) its prevalence in military and civilian population, (3) classification and pathophysiology of TBI, (4) biomarkers and detection methods, (5) animal models of TBI, and (6) the advantages and disadvantages of each model and the species used, as well as possible treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agoston DV, Kamnaksh A (2015) Frontiers in Neuroengineering Modeling the Neurobehavioral Consequences of Blast-Induced Traumatic Brain Injury Spectrum Disorder and Identifying Related Biomarkers. In: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, vol. (Kobeissy FH, ed). Boca Raton (FL): CRC Press/Taylor & Francis© 2015 by Taylor & Francis Group, LLC

  • Albert-Weißenberger C, Várrallyay C, Raslan F, Kleinschnitz C, Sirén AL (2012) An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Exp Transl Stroke Med 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S (2011) Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp

  • Ariyannur PS, Xing G, Barry ES, Benford B, Grunberg NE, Sharma P (2021), Effects of pyruvate administration on mitochondrial enzymes, neurological behaviors, and neurodegeneration after traumatic brain injury. Aging Dis

  • Axelsson H, Hjelmqvist H, Medin A, Persson JK, Suneson A (2000) Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge. Mil Med 165:119–126

    Article  CAS  PubMed  Google Scholar 

  • Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, Kim Y, Ritzel D et al (2009) An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma 26:841–860

    Article  PubMed  Google Scholar 

  • Berger RP (2006) The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. J Head Trauma Rehabil 21:315–333

    Article  PubMed  Google Scholar 

  • Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68

    PubMed  Google Scholar 

  • Blaylock RL, Maroon J (2011) Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD (2019) A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma 36:1683–1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockswold GL, Ford SE, Anderson DC, Bergman TA, Sherman RE (1992) Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J Neurosurg 76:929–934

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

  • Bramlett HM, Dietrich WD (2002) Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol 103:607–614

    Article  PubMed  Google Scholar 

  • Briones TL (2015) Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury? Annu Rev Nurs Res 33:31–73

    Article  PubMed  Google Scholar 

  • CDC, Morbidity and Mortality Weekly Report (MMWR). Brain Injury Awareness Month in: Centers for Disease Control and Prevention USDoHaHS (Ed.), 2020, pp. 225–230

  • CDC, Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths—United States, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services., 2019

  • Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Cernak I, Wang Z, Jiang J, Bian X, Savic J (2001) Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj 15:593–612

    Article  CAS  PubMed  Google Scholar 

  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13:557–568

    Article  CAS  PubMed  Google Scholar 

  • Dail WG, Feeney DM, Murray HM, Linn RT, Boyeson MG (1981) Responses to cortical injury: II. Widespread depression of the activity of an enzyme in cortex remote from a focal injury. Brain Res 211:79–89

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  • Earle SA, de Moya MA, Zuccarelli JE, Norenberg MD, Proctor KG (2007) Cerebrovascular resuscitation after polytrauma and fluid restriction. J Am Coll Surg 204:261–275

    Article  PubMed  Google Scholar 

  • Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J Med 76:111–118

    Article  PubMed  Google Scholar 

  • Elder GA, Ehrlich ME, Gandy S (2019) Relationship of traumatic brain injury to chronic mental health problems and dementia in military veterans. Neurosci Lett 707:134294

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  • Friess SH, Lapidus JB, Brody DL (2015) Decompressive craniectomy reduces white matter injury after controlled cortical impact in mice. J Neurotrauma 32:791–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Garman RH, Jenkins LW, Switzer RC 3rd, Bauman RA, Tong LC, Swauger PV, Parks SA, Ritzel DV et al (2011) Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma 28:947–959

    Article  PubMed  Google Scholar 

  • GBD (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:56–87

    Article  Google Scholar 

  • Giza CC, Hovda DA (2001) The neurometabolic cascade of concussion. J Athl Train 36:228–235

    PubMed  PubMed Central  Google Scholar 

  • Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90:1221–1233

    Article  PubMed  Google Scholar 

  • Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D’Surney L, Ferrell J, Deng B et al (2016) A novel closed-head model of mild traumatic brain injury using focal primary overpressure blast to the cranium in mice. J Neurotrauma 33:403–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwarzo IH, Perez-Patron M, Xu X, Radcliff T, Horney J (2021), Traumatic brain injury related hospitalizations: factors associated with in-hospital mortality among elderly patients hospitalized with a TBI. Brain Inj:1–9.

  • Harch PG, Andrews SR, Fogarty EF, Amen D, Pezzullo JC, Lucarini J, Aubrey C, Taylor DV et al (2012) A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. J Neurotrauma 29:168–185

  • Hoogenboom WS, Branch CA, Lipton ML (2019) Animal models of closed-skull, repetitive mild traumatic brain injury. Pharmacol Ther 198:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341-353

  • Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 99:10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingebrigtsen T, Waterloo K, Jacobsen EA, Langbakk B, Romner B (1999) Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery 45:468–475

    Article  CAS  PubMed  Google Scholar 

  • Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson VE, Meaney DF, Cullen DK, Smith DH (2015) Animal models of traumatic brain injury. Handb Clin Neurol 127:115–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato K, Fujimura M, Nakagawa A, Saito A, Ohki T, Takayama K, Tominaga T (2007) Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway. J Neurosurg 106:667–676

    Article  PubMed  Google Scholar 

  • Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA (1995) The response of neurons and microglia to blast injury in the rat brain. Neuropathol Appl Neurobiol 21:369–377

    Article  CAS  PubMed  Google Scholar 

  • Kelley BJ, Lifshitz J, Povlishock JT (2007) Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol 66:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM (2011) Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model. J Neurotrauma 28:1767–1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, Saatman KE, Wieloch T et al (2003) Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab 23:219–231

    Article  CAS  PubMed  Google Scholar 

  • Lindquist LK, Love HC, Elbogen EB (2017) Traumatic brain injury in iraq and afghanistan veterans: new results from a national random sample study. J Neuropsychiatry Clin Neurosci 29:254–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YR, Cardamone L, Hogan RE, Gregoire MC, Williams JP, Hicks RJ, Binns D, Koe A et al (2010) Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J Nucl Med 51:1788–1795

    Article  PubMed  Google Scholar 

  • Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73:14–29

    Article  CAS  PubMed  Google Scholar 

  • Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW (2015) Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol 5:1147–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucke-Wold BP, Logsdon AF, Nguyen L, Eltanahay A, Turner RC, Bonasso P, Knotts C, Moeck A et al (2018) Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci 21:79–91

  • Long JB, Bentley TL, Wessner KA, Cerone C, Sweeney S, Bauman RA (2009) Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma 26:827–840

    Article  PubMed  Google Scholar 

  • Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J (2019) Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol 56:5332–5345

    Article  CAS  PubMed  Google Scholar 

  • Margulies SS, Thibault LE, Gennarelli TA (1990) Physical model simulations of brain injury in the primate. J Biomech 23:823–836

    Article  CAS  PubMed  Google Scholar 

  • Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  • McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee HS, Wojtowicz SM et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64

    Article  PubMed  Google Scholar 

  • Missliwetz J, Wieser I (1989) Gunshot wounds of the head in soldiers wearing military helmets– general aspects and experiments and observations on the biomechanics and wound morphology. Z Rechtsmed 102:41–54

    CAS  PubMed  Google Scholar 

  • Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H et al (2005) Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136:971–989

    Article  CAS  PubMed  Google Scholar 

  • Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D, Cripton PA, Wellington CL (2013) Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech 6:1325–1338

    PubMed  PubMed Central  Google Scholar 

  • Namjoshi DR, Cheng WH, Bashir A, Wilkinson A, Stukas S, Martens KM, Whyte T, Abebe ZA et al (2017) Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration). Exp Neurol 292:80–91

    Article  PubMed  Google Scholar 

  • NINDS, Traumatic Brain Injury. Hope Through Research, in: Stroke NIoNDa (Ed.), Office of Communications and Public Liaison. National Institutes of Health Bethesda, Maryland 20892 NIH Publication No. 20-NS-2478

  • Povlishock JT (2013) The window of risk in repeated head injury. J Neurotrauma 30:1

    Article  PubMed  Google Scholar 

  • Povlishock JT, Becker DP (1985) Fate of reactive axonal swellings induced by head injury. Lab Invest 52:540–552

    CAS  PubMed  Google Scholar 

  • Prieto R, Tavazzi B, Taya K, Barrios L, Amorini AM, Di Pietro V, Pascual JM, Marmarou A et al (2011) Brain energy depletion in a rodent model of diffuse traumatic brain injury is not prevented with administration of sodium lactate. Brain Res 1404:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raabe A, Grolms C, Seifert V (1999) Serum markers of brain damage and outcome prediction in patients after severe head injury. Br J Neurosurg 13:56–59

    Article  CAS  PubMed  Google Scholar 

  • Reneer DV, Hisel RD, Hoffman JM, Kryscio RJ, Lusk BT, Geddes JW (2011) A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J Neurotrauma 28:95–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson CL, Saraswati M, Fiskum G (2007) Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 101:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Rostami E, Davidsson J, Ng KC, Lu J, Gyorgy A, Walker J, Wingo D, Plantman S et al (2012) A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Front Neurol 3:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J (2013) Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 42:286–291

    Article  Google Scholar 

  • Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, Hoffer BJ, Balaban CD et al (2011) A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 232:280–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Horkayne-Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, Troncoso JC, Koliatsos VE (2014) The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Commun 2:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Säljö A, Bao F, Haglid KG, Hansson HA (2000) Blast exposure causes redistribution of phosphorylated neurofilament subunits in neurons of the adult rat brain. J Neurotrauma 17:719–726

    Article  PubMed  Google Scholar 

  • Schmidt RH, Grady MS (1993) Regional patterns of blood-brain barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma 10:415–430

    Article  CAS  PubMed  Google Scholar 

  • Silverberg ND, Iverson GL (2013) Is rest after concussion “the best medicine?”: recommendations for activity resumption following concussion in athletes, civilians, and military service members. J Head Trauma Rehabil 28:250–259

    Article  PubMed  Google Scholar 

  • Silverberg ND, Iaccarino MA, Panenka WJ, Iverson GL, McCulloch KL, Dams-O’Connor K, Reed N, McCrea M et al (2020) Management of concussion and mild traumatic brain injury: a synthesis of practice guidelines. Arch Phys Med Rehabil 101:382–393

    Article  PubMed  Google Scholar 

  • Sinnakaruppan I, Downey B, Morrison S (2005) Head injury and family carers: a pilot study to investigate an innovative community-based educational programme for family carers and patients. Brain Inj 19:283–30

  • Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12:169–178

    Article  CAS  PubMed  Google Scholar 

  • Statler KD, Kochanek PM, Dixon CE, Alexander HL, Warner DS, Clark RS, Wisniewski SR, Graham SH et al (2000) Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma 17:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Statler KD, Alexander H, Vagni V, Dixon CE, Clark RS, Jenkins L, Kochanek PM (2006) Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J Neurotrauma 23:97–108

    Article  PubMed  Google Scholar 

  • Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, Wojnarowicz MW, Casey N et al (2018) Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 141:422–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Theadom A, Mahon S, Hume P, Starkey N, Barker-Collo S, Jones K, Majdan M, Feigin VL (2020) Incidence of sports-related traumatic brain injury of all severities: a systematic review. Neuroepidemiology 54:192–199

    Article  PubMed  Google Scholar 

  • Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  • Tucker LB, Fu AH, McCabe JT (2021), Hippocampal-dependent cognitive dysfunction following repeated diffuse rotational brain injury in male and female mice. J Neurotrauma

  • Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ (2009) A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther 328:487–495

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang X, Su H, Han Z, Yu H, Wang D, Jiang R, Liu Z et al (2015) Recombinant human erythropoietin improves the neurofunctional recovery of rats following traumatic brain injury via an increase in circulating endothelial progenitor cells. Transl Stroke Res 6:50–59

  • Whalen MJ, Carlos TM, Kochanek PM, Heineman S (1998) Blood-brain barrier permeability, neutrophil accumulation and vascular adhesion molecule expression after controlled cortical impact in rats: a preliminary study. Acta Neurochir Suppl 71:212–214

    CAS  PubMed  Google Scholar 

  • Wofford KL, Loane DJ, Cullen DK (2019) Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen Res 14:1481–1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojnarowicz MW, Fisher AM, Minaeva O, Goldstein LE (2017) Considerations for experimental animal models of concussion, traumatic brain injury, and chronic traumatic encephalopathy-these matters matter. Front Neurol 8:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarnell AM, Shaughness MC, Barry ES, Ahlers ST, McCarron RM, Grunberg NE (2013), Blast traumatic brain injury in the rat using a blast overpressure model. Curr Protoc Neurosci Chapter 9:Unit 9 41

  • Zhu F, Skelton P, Chou CC, Mao H, Yang KH, King AI (2013) Biomechanical responses of a pig head under blast loading: a computational simulation. Int J Numer Method Biomed Eng 29:392–407

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpa Sharma.

Additional information

Communicated by Patrick Haggard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Uniformed Services University, Department of the Navy, Department of Defense, nor the U.S. Government. This work was supported, by CDMRP Grant 167094 funding to PS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, A., Soderstrom, M., Saha, B. et al. Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res 239, 2939–2950 (2021). https://doi.org/10.1007/s00221-021-06178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-021-06178-6

Keywords

Navigation