Skip to main content
Log in

Green Emission Carbon Nanodots as Fluorescence Turn-on Probe for Detecting Picolinic Acid

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new strategy for the determination of picolinic acid (PLA) is developed by utilizing green-emissive boron and nitrogen co-doped carbon nanodots (BNCNDs) and Cu2+ ion. Hydroquinone, uric acid and boric acid act as carbon, nitrogen and boron sources for BNCNDs synthesis, respectively. Interestingly, the green emission of BNCNDs is quenched in the presence of Cu2+ by electron transfer. Upon addition of the specific reagent (PLA), Cu2+ ion is removed from the surface of BNCNDs owing to the formation of a strong complex between PLA and Cu2+ ion, which leads to a significant fluorescence recovery of BNCNDs. The “turn-on” phenomenon allows to determine PLA by a very simple method. This chemosensing method displays a linear range from 50 nM to 80 μM with a detection limit of 14 nM (3σ/k) for PLA. The method was applied to the determination of PLA in fetal bovine serum samples with the recoveries between 94 and 106%, which shows that this method has potential for use in applications to real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Waghmare, M.D., Wasewar, K.L., Sonawane, S.S., and Shende, D.Z., Ind. Eng. Chem. Res., 2011, vol. 50, p. 13526.

    Article  CAS  Google Scholar 

  2. Datta, D., Uslu H., and Kumar, S., Chem. Eng. Res. Des., 2015, vol. 95, p. 105.

    Article  CAS  Google Scholar 

  3. Pope, C.G., Matijević, E., and Patel, R.C., J. Colloids Interace Sci., 1981, vol. 80, p. 74.

    Article  CAS  Google Scholar 

  4. Tuyun, A.F. and Uslu, H., Desalination, 2011, vol. 268, p. 134.

    Article  CAS  Google Scholar 

  5. Yang, Y., Liu, J., Sun, Y., Hu, S., Gao, Y., Zhang, Z., Luo, S., and Rao, L., J. Chem. Thermodyn., 2017, vol. 113, p. 350.

    Article  CAS  Google Scholar 

  6. Wang, X., Davis I., Liu A., Miller A., and Shamsi, S.A., J. Chromatogr. A, 2013, vol. 1316, p 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stone, T.W. and Darlington, L.G., Nat. Rev. Drug Discovery, 2002, vol. 1, p 609.

    Article  CAS  PubMed  Google Scholar 

  8. Pérez-De La Cruz, V., Köningsberg M., and Santamaría, A., CNS Neurol. Disord.: Drug Targets, 2007, vol. 6, p. 398.

    Article  Google Scholar 

  9. Chen, Y. and Guillemin, G.J., Int. J. Tryptophan Res., 2009, vol. 2, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schwarcz, R., Curr. Opin. Pharm., 2004, vol. 4, p. 12.

    Article  CAS  Google Scholar 

  11. Li, K.C., Zhang, H.B., Liu, J., Cao, X.J., and Zhang, Y.M., Chin. J. Anal. Chem., 2005, vol. 15, p. 1580.

    Google Scholar 

  12. Czajkowska, T. and Jaroniec, M., J. Chromatogr. A., 1997, vol. 762, p. 147.

    Article  CAS  PubMed  Google Scholar 

  13. Morimoto, I. and Furuta, K., Anal. Chem., 1962, vol. 34, p. 1033.

    Article  CAS  Google Scholar 

  14. Franken, J.J., Vidal-Madjar, C., and Guiochon, G., Anal. Chem., 1971, vol. 43, p. 2034.

    Article  CAS  Google Scholar 

  15. Yan, L.W., Liu, C., Shen, L.H., Li, J.L., Liu, X., Lv, M.Q., Su, C.J., and Ye, Z.B., Chem. Lett., 2018, vol. 47, p. 640.

    Article  CAS  Google Scholar 

  16. Eckstein, J.A., Ammerman, G.M., Reveles, J.M., and Ackermann, B.L., J. Mass Spectrom., 2008, vol. 43, p. 782.

    Article  CAS  PubMed  Google Scholar 

  17. Arcudi, F., Đorđević, L., and Prato, M., Acc. Chem. Res., 2019, vol. 52, p. 2070.

    Article  CAS  PubMed  Google Scholar 

  18. Yan, F.Y., Zou, Y., Wang, M., Mu, X.L., Yang, N., and Chen, L., Sens. Actuators, B, 2014, vol. 192, p. 488.

    Article  CAS  Google Scholar 

  19. Xie, Y.D., Cheng, D.D., Li, X.L., and Han, A.X., Sensors, 2019, vol. 19, p. 10.

    Google Scholar 

  20. Das, P., Ganguly, S., Mondal, S., Bose, M., Das, A.K., Banerjee, S., and Das, N.C., Sens. Actuators, B, 2018, vol. 266, p. 583.

    Article  CAS  Google Scholar 

  21. Liu, Y., Liu, Y.N., Park, S., Zhang, Y.F., Kim, T., Chae, S., Park, M., and Yong, K.H., J. Mater. Chem. A, 2019, vol. 3, p. 17747.

    Article  CAS  Google Scholar 

  22. Liu, J.H., Li, J.Z., Xu, L.Q., Qiao, Y.J., and Chen, J.C., Ind. Eng. Chem. Res., 2017, vol. 56, p. 3905.

    Article  CAS  Google Scholar 

  23. Pang, L.F., Wu, H., Fu, M.J., Guo, X.F. and Wang, H., Microchim. Acta, 2019, vol. 186, p. 708.

    Article  CAS  Google Scholar 

  24. Han, Y.Z., Tang, D., Yang, Y.M., Li, C.X., Kong, W.Q., Huang, H., Liu, Y., and Kang, Z.H., Nanoscale, 2015, vol. 7, p. 5955.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z.X, Jin, X., Gao, Y.F., Kong, F.Y., Wang, W.J., and Wang, W., Microchim. Acta, 2019, vol. 186, p. 328.

    Article  CAS  Google Scholar 

  26. Qu, D., Zheng, M., Li, J., Xie, Z.G., and Sun, Z.C., Light-Sci. Appl., 2015, vol. 4, Article e364.

    Article  CAS  Google Scholar 

  27. Wang, Z.X. and Ding, S.N., Anal. Chem., 2014, vol. 86, p. 7436.

    Article  CAS  PubMed  Google Scholar 

  28. Schiros, T., Nordlund, D., Palova, L., Zhao, L.Y., Levendorf, M., Jaye, C., Reichman, D., Park, J., Hybertsen, M., and Pasupathy, A., ACS Nano, 2016, vol. 10, p. 6574.

    Article  CAS  PubMed  Google Scholar 

  29. Rong, M.C., Zhang, K.X., Wang, Y.R., and Chen, X., Chin. Chem. Lett., 2017, vol. 28, p. 1119.

    Article  CAS  Google Scholar 

  30. Xu, M.S., Che, S.T., Ma, P.Y., Zhang, F.M., Xu, L.B., Liu, X., Wang, X.H., Song, D.Q., and Sun, Y., Talanta, 2019, vol. 197, p. 548.

    Article  CAS  PubMed  Google Scholar 

  31. Song, J.P., Liang, X.M., Ma, Q., An, J.H., and Feng, F., Spectrochim. Acta, Part A, 2019, vol. 216, p. 296.

    Article  CAS  Google Scholar 

  32. Huang, S., Yang, E.L., Yao, J.D., Liu, Y., and Xiao, Q., Anal. Chim. Acta, 2018, vol. 1035, p. 192.

    Article  CAS  PubMed  Google Scholar 

  33. Purbia, R. and Paria, S., Biosens. Bioelectron., 2016, vol. 79, p. 467.

    Article  CAS  PubMed  Google Scholar 

  34. Li, L.B., Yu, B., and You, T.Y., Biosens. Bioelectron., 2015, vol. 74, p. 263.

    Article  PubMed  CAS  Google Scholar 

  35. Yuan, Y.H., Liu, Z.X., Li, R.R., Zou, H.R., Lin, M., Liu, H., and Huang, C.Z., Nanoscale, 2016, vol. 8, p. 6770.

    Article  CAS  PubMed  Google Scholar 

  36. Bian, S.Y., Shen, C., Qian, Y.T., Liu, J.Y., Xi, F.N., and Dong, X.P., Sens. Actuators, B, 2017, vol. 242, p. 231.

    Article  CAS  Google Scholar 

  37. Xu, Q., Liu, Y., Gao, C., Wei, J.F., Zhou, H.J., Chen, Y.S., Dong, C.B., Sreeprasad, T.S., Li, N., and Xia, Z.H., J. Mater. Chem., C, 2015, vol. 3, p. 9885.

    Article  CAS  Google Scholar 

  38. Sun, Y.P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A., Pathak, P., Meziani, M.J., Harruff, B.A., Wang, X., Wang. H., Luo, P.G., Yang, H., Kose, M.E., Chen, B., Veca, L.M., and Xie, S.Y., J. Am. Chem. Soc., 2006, vol. 128, p. 7756.

    Article  CAS  PubMed  Google Scholar 

  39. Praneerad, J., Thongsai, N., Supchocksoonthorn, P., Kladsomboon, S., and Paoprasert, P., Spectrochim. Acta, Part A, 2019, vol. 211, p. 59.

    Article  CAS  Google Scholar 

  40. Hou, J.Y., Dong, G.J., Tian, Z.B., Lu, J.T., Wang, Q.Q., Ai, S.Y., and Wang, M.L., Food Chem., 2016, vol. 202, p. 81.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, L., Lin, Y., Huang, Z., Ren, J., and Qu, X., Chem. Commun., 2012, vol. 48, p. 1147.

    Article  CAS  Google Scholar 

  42. Kramer, R., Angew. Chem., Int. Ed., 1998, vol. 37, p. 772.

    Article  CAS  Google Scholar 

  43. Rahimi, Y., Goulding, A., Shrestha, S., Mirpuri, S., and Deo, S.K., Biochem. Biophys. Res. Commun., 2008, vol. 370, p. 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, S., Tian, J.Q., Wang, L., Zhang, Y.W., Qin, X.Y., Luo, Y.L., Asiri, A.M., Al-Youbi, A.O., and Sun, X.P., Adv. Mater., 2012, vol. 24, p. 2037.

    Article  CAS  PubMed  Google Scholar 

  45. Rabindra, R.P., Raju, N., Raghavaiah, P., and Hussain, S., .Eur. J. Med. Chem., 2014, vol. 79, p. 117.

    Article  CAS  Google Scholar 

  46. Song, J., Ni, J., Wang, Q., Chen, H., Gao, F., Lin, Z., and Wang, Q., Biosens. Bioelectron., 2019, vol. 141, 111405.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We greatly appreciate the support of the National Natural Science Foundation of China (21705140, 21876144) and the Natural Science Foundation of Jiangsu Province (BK20170474) and the work was supported by Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Xia Wang or Wei Wang.

Ethics declarations

There are no conflicts to declare. Yu-Jie Ding and Xing Jin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YJ., Jin, X., Wang, ZX. et al. Green Emission Carbon Nanodots as Fluorescence Turn-on Probe for Detecting Picolinic Acid. J Anal Chem 76, 920–929 (2021). https://doi.org/10.1134/S1061934821080037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821080037

Keywords:

Navigation