Skip to main content
Log in

A novel design methodology for extended continuous class-F power amplifiers in wireless applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, an extended continuous class-F power amplifier (PA) is investigated, designed, and fabricated. The new auxiliary parameter \(\left(\beta +\alpha {\mathrm{cos}}^{2}\theta \right)\), is proposed to increase the efficiency in comparison with the old auxiliary parameter \(\left(1+\delta \mathrm{cos}\theta \right)\). A novel methodology based on the smith chart design space and the proposed auxiliary parameter is introduced and analyzed. The design methodology, by controlling harmonic interferences, expands the amplifier bandwidth to below 1 GHz (up to 200 MHz). The laterally diffused metal–oxide–semiconductor (LDMOS) is selected, and an optimal bias point for its best performance is considered. Also, microstrip feedback based on the low-impedance coupled line is designed to accomplish transistor unconditional stability. Then, a ladder network based on the radial lines is designed as a harmonic control circuit, which controls harmonics up to 5th into the proposed design space. To verify this design approach, an extended continuous class-F power amplifier is designed and fabricated to operate at 0.2–1.7 GHz frequency range. Measurement results of the implemented PA shown that the output power of 38–40.2 dBm and the power gain of 13–15.2 dB were obtained. In addition, the final PA achieved a remarkable 53–79% drain efficiency over the whole operation bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kazimierczuk, M. K. (2008). RF power amplifiers (pp. 267–289). Wiley.

    Google Scholar 

  2. Lajnef, H., Dakhli, M. C., Hizem, M., & Bouallegue, R. (2019). Compensation schemes and performance analysis of jointly nonlinear amplifier and timing errors for CP-OFDM based cognitive radio networks. Wireless Networks, 25(4), 2173–2185.

    Article  Google Scholar 

  3. Baghani, M., Mohammadi, A., & Majidi, M. (2019). An accurate analysis of the nonlinear power amplifier effects on SC-FDMA signals. Wireless Networks, 25(2), 533–543.

    Article  Google Scholar 

  4. Liu, S., Liu, M., Yang, S., Ma, C., & Zhu, X. (2016). A novel design methodology for high-efficiency current-mode and voltage-mode class-E power amplifiers in wireless power transfer systems. IEEE Transactions on Power Electronics, 32(2), 4514–4523.

    Google Scholar 

  5. Suetsugu, T., & Kazimierczuk, M. K. (2005). Design procedure for lossless voltage-clamped class E amplifier with a transformer and a diode. IEEE Transactions on Power Electronics, 20(1), 56–64.

    Article  Google Scholar 

  6. Lam, C. K., Tan, M. T., Cox, S. M., & Yeo, K. S. (2014). A high-efficiency self-oscillating class-D amplifier for piezoelectric speakers. IEEE Transactions on Power Electronics, 30(9), 5125–5135.

    Google Scholar 

  7. Lépine, F., Ådahl, A., & Zirath, H. (2005). L-band LDMOS power amplifiers based on an inverse class-F architecture. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2007–2012.

    Article  Google Scholar 

  8. Bosi, G., Raffo, A., Trevisan, F., Vadalà, V., Crupi, G., & Vannini, G. (2018). Nonlinear-embedding design methodology oriented to LDMOS power amplifiers. IEEE Transactions on Power Electronics, 33(10), 8764–8774.

    Article  Google Scholar 

  9. Hayati, M., Sheikhi, A., & Grebennikov, A. (2015). Design and analysis of class E/F3 power amplifier with nonlinear shunt capacitance at nonoptimum operation. IEEE Transactions on Power Electronics, 30(2), 727–734.

    Article  Google Scholar 

  10. Yang, Y., Woo, Y. Y., Yi, J., & Kim, B. (2020). Push-pull class Φ2 RF power amplifier. IEEE Transactions on Power Electronics, 35(10), 10515–10531.

    Article  Google Scholar 

  11. Yang, Y., Woo, Y. Y., Yi, J., & Kim, B. (2001). A new empirical large-signal model of Si LDMOSFETS for high-power amplifier design. IEEE Transactions on Microwave Theory and Techniques, 49(9), 1626–1633.

    Article  Google Scholar 

  12. Moon, J., Jee, S., Kim, J., Kim, J., & Kim, B. (2012). Behaviors of class-F and class-F-1 amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1937.

    Article  MATH  Google Scholar 

  13. Martinez-rodriguez, F. J., Member, G. S., Roblin, P., Member, S., Popovic, Z., & Martinez-lopez, J. I. (2017). Optimal definition of class-F for realistic transistor models. IEEE Transactions on Microwave Theory and Techniques, 65(10), 1–11.

    Article  Google Scholar 

  14. Schmelzer, D., & Long, S. I. (2007). A GaN HEMT class-F amplifier at 2 GHz with > 80% PAE. IEEE Journal of Solid-State Circuits, 42(10), 2130–2136.

    Article  Google Scholar 

  15. Xu, J. X., Zhang, X. Y., & Song, X. Q. (2017). High-efficiency filter-integrated class-F power amplifier based on dielectric resonator. IEEE Microwave and Wireless Components Letters, 27(9), 827–829.

    Article  Google Scholar 

  16. Guo, Q. Y., Zhang, X. Y., Xu, J. X., Li, Y. C., & Xue, Q. (2017). “Bandpass class-F power amplifier based on multifunction hybrid cavity-microstrip filter. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(7), 742–746.

    Google Scholar 

  17. Moon, J., Kim, J., & Kim, B. (2010). Investigation of a class-J power amplifier with a nonlinear Cout for optimized operation. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2800–2811.

    Article  Google Scholar 

  18. Yang, Z., Yao, Y., Li, M., Jin, Y., Li, T., Geng, Z., & Yu, Z. (2018). A precise harmonic control technique for high efficiency concurrent dual-band continuous class-F power amplifier. IEEE Access, 6, 51864–51874.

    Article  Google Scholar 

  19. Liu, C., & Cheng, Q.-F. (2018). A novel compensation circuit of high-efficiency concurrent dual-band class-E power amplifiers. IEEE Microwave and Wireless Components Letters, 28(8), 720–722.

    Article  Google Scholar 

  20. Amplifier, H. P., Cheng, Q., Member, S., Fu, H., Zhu, S., & Member, S. (2016). Two-stage high-efficiency concurrent dual-band harmonic-tuned power amplifier. IEEE Transactions on Microwave Theory and Techniques, 64(10), 3232–3243.

    Article  Google Scholar 

  21. Carrubba, V., Clarke, A. L., Akmal, M., Lees, J., Benedikt, J., Tasker, P. J., & Cripps, S. C. (2011). On the extension of the continuous class-F mode power amplifier. IEEE Transactions on Microwave Theory and Techniques, 59(5), 1294–1303.

    Article  Google Scholar 

  22. Carrubba, V., Akmal, M., Quay, R., Member, S., Lees, J., Benedikt, J., Cripps, S. C., Tasker, P. J., & Member, S. (2012). The continuous inverse class-F mode with resistive second-harmonic impedance. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1928–1936.

    Article  Google Scholar 

  23. Ampli, C. P. (2012). A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifier. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1952–1963.

    Article  Google Scholar 

  24. Huang, H., Zhang, B., Yu, C., Gao, J., Wu, Y., & Liu, Y. (2017). Design of multioctave bandwidth power amplifier based on resistive second-harmonic impedance continuous class-F. IEEE Microwave and Wireless Components Letters, 27(9), 830–832.

    Article  Google Scholar 

  25. Lu, Z., & Chen, W. (2013). Resistive second-harmonic impedance continuous class-F power amplifier with over one octave bandwidth for cognitive radios. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(4), 489–497.

    Article  Google Scholar 

  26. Zheng, S. Y., Liu, Z. W., Zhang, X. Y., Zhou, X. Y., & Chan, W. S. (2018). Design of ultrawideband high-efficiency extended continuous class-F power amplifier. IEEE Transactions on Industrial Electronics, 65(6), 4661–4669.

    Article  Google Scholar 

  27. Aggrawal, E., Rawat, K., & Roblin, P. (2017). Investigating continuous class-F power amplifier using nonlinear embedding model. IEEE Microwave and Wireless Components Letters, 27(6), 593–595.

    Article  Google Scholar 

  28. Dong, Y., Mao, L., & Xie, S. (2017). Extended continuous inverse class-F power amplifiers with class-AB bias conditions. IEEE Microwave and Wireless Components Letters, 27(4), 368–370.

    Article  Google Scholar 

  29. Chen, J., He, S., You, F., Tong, R., & Peng, R. (2014). Design of broadband high-efficiency power amplifiers based on a series of continuous modes. IEEE Microwave and Wireless Components Letters, 24(9), 631–633.

    Article  Google Scholar 

  30. Shi, W., He, S., Peng, J., & Wang, J. (2020). Digital dual-Input doherty configuration for ultrawideband application. IEEE Transactions on Industrial Electronics, 67(9), 7509–7518.

    Article  Google Scholar 

  31. Narendra, K., & Yewkok, T. (2014). Optimised high-efficiency class E radio frequency power amplifier for wide bandwidth and high harmonics suppression. IET Circuits, Devices & Systems, 8(2), 82–89.

    Article  Google Scholar 

  32. M. Vasi´c, O. Garcia, J. A. Oliver, P. Alou, D. Diaz, R. Prieto, and J. A. Cobos, . (2012). Envelope amplifier based on switching capacitors for high-efficiency RF amplifiers. IEEE Transactions on Power Electronics, 27(3), 1359–1368.

    Article  Google Scholar 

  33. Paul, R., Sankey, L., Corradini, L., Popovic, Z., & Maksimovic, D. (2010). Power management of wideband code division multiple access RF power amplifiers with antenna mismatch. IEEE Transactions on Power Electronics, 25(4), 981–991.

    Article  Google Scholar 

  34. Hong, J.-S.G., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications. Wiley.

    Google Scholar 

  35. Yang, M., Xia, J., Guo, Y., & Zhu, A. (2016). Highly efficient broadband continuous inverse class-F power amplifier design using modified elliptic low-pass filtering matching network. IEEE Transactions on Microwave Theory and Techniques, 64(5), 1515–1525.

    Article  Google Scholar 

  36. Chen, K., & Peroulis, D. (2011). Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3162–3173.

    Article  Google Scholar 

  37. Thian, M., Barakat, A., & Fusco, V. (2015). High-efficiency harmonic-peaking class-EF power amplifiers with enhanced maximum operating frequency. IEEE Transactions on Microwave Theory and Techniques, 63(2), 659–671.

    Article  Google Scholar 

  38. Liu, C., Li, X., Zhao, Y., Qi, T., Du, X., Chen, W., & Ghannouchi, F. M. (2021). Investigation of high-efficiency parallel-circuit class-ef power amplifiers with arbitrary duty cycles. IEEE Transactions on Industrial Electronics, 68(6), 5000–5012.

    Article  Google Scholar 

  39. Latha, Y. M. A., Rawat, K., & Roblin, P. (2020). Nonlinear embedding model-based continuous class E/F power amplifier. IEEE Microwave and Wireless Components Letters, 68(9), 3732–3744.

    Google Scholar 

  40. Yang, Z., Li, M., Dai, Z., Xu, C., Jin, Y., Lia, T., & Tang, F. (2016). A Generalized High-Efficiency Broadband Class-E/F 3 Power Amplifier Based on Design Space Expanding of Load Network. IEEE Transactions on Microwave Theory and Techniques, 64(5), 1515–1525.

    Article  Google Scholar 

  41. Yang, Z., Yao, Y., Liu, Z., Li, M., Li, T., & Dai, Z. (2018). Design of high efficiency broadband continuous class-F power amplifier using real frequency technique with finite transmission zero. IEEE Access, 6, 61983–61993.

    Article  Google Scholar 

  42. Abbasian, S., & Johnson, T. (2016). Power-efficiency characteristics of class-F and inverse class-F synchronous rectifiers. IEEE Transactions on Microwave Theory and Techniques, 64(12), 4740–4751.

    Article  Google Scholar 

  43. Luo, W., Tang, Z., Ge, B., & Cao, X. (2017). Design of broadband power amplifier based on a series of novel continuous inverse modes. Electronics Letters, 53(10), 685–687.

    Article  Google Scholar 

  44. Zarghami, S., Hayati, M., et al. (2020). Continuous class-F power amplifier using quasi-elliptic low-Pass filtering matching network. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 2407–2411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hayati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, S., Hayati, M., Kazimierczuk, M.K. et al. A novel design methodology for extended continuous class-F power amplifiers in wireless applications. Wireless Netw 27, 3947–3968 (2021). https://doi.org/10.1007/s11276-021-02718-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02718-8

Keywords

Navigation