Skip to main content
Log in

Antioxidant, Antimicrobial, and Cytotoxic Activities of Condensate from Rf-Vacuum Timber Drying Process in the Forestry Industry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As the demand for dried timber has been increasing worldwide, drying of timbers is required to supply the demand in the manufacturing industries of furniture and other interior woodwork. During the drying process, some condensation will occur, resulting in liquids' emission, which requires disposal. In the liquid condensate, there are many substances at low concentrations that make their recovery uneconomic. After revealing the potential of the substances available in these condensates, biotechnological processes can be employed to produce high value-added products. This condensate contains tree sap, including proteins, enzymes, and many natural compounds such as terpenoids, alkaloids, phenolic compounds. Thus, it is considered that these natural compounds might be beneficial in pharmaceutical applications. Natural compounds such as phenolic compounds are bioactive substances that have antioxidant, antimicrobial, and cytotoxic activities.

This study was aimed to characterize the condensate from the Rf-vacuum drying process of beech (Fagus sylvatica L.), walnut (Juglans regia L.), and restharrow (Onosis arvensis L.) in terms of antioxidant capacity, total phenol content, antimicrobial activity, and cytotoxicity. Obtained data revealed that condensates from the Rf-vacuum drying process inhibited the growth of both S. epidermidis and E. coli significantly.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azinobis(3-ethylbenzothiazoline-6-sulphonic acid

DMEM:

Dulbecco’s modified eagle medium

FBS:

Fetal bovine serum

GAE:

Gallic acid equivalent

Rf-V:

Radio frequency-vacuum

TAOC:

Total antioxidant capacity

TEAC:

Trolox equivalent antioxidant capacity

TPC:

Total phenol content

References

  1. Dulǎu, M., Madaras, I.: Development of a monitoring and control system for Timber’s drying process. Procedia Manuf. 32, 545–552 (2019)

    Article  Google Scholar 

  2. Partanen, A., Carus, M.: Wood and natural fiber composites current trend in consumer goods and automotive parts. Reinf. Plast. 60, 170–173 (2016)

    Article  Google Scholar 

  3. Espinoza, O., Bond, B.: Vacuum drying of wood—state of the art. Curr. For Rep. 2, 223–235 (2016)

    Google Scholar 

  4. Roffael, E.: Über die Abgabe von Flüchtigen Säuren aus Holzwerkstoffen - Chemische Aspekte - Chemische A. Holz Roh Werkst. 66, 373–378 (2008)

    Article  Google Scholar 

  5. Konno, K.: Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry 72, 1510–1530 (2011)

    Article  Google Scholar 

  6. Dai, J., Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010)

    Article  Google Scholar 

  7. Willför, S.M., Ahotupa, M.O., Hemming, J.E., et al.: Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J. Agric. Food Chem. 51, 7600–7606 (2003)

    Article  Google Scholar 

  8. Dénes, T., Bartha, S.G., Kerényi, M., et al.: Histological and antimicrobial study of Ononis arvensis L. Acta Biol. Hung. 68, 321–333 (2017)

    Article  Google Scholar 

  9. Granström, K. Emissions of volatile organic compounds from wood. Karlstad University, 2005.

  10. Svanberg, I., Sõukand, R., Łuczaj, Ł, et al.: Uses of tree saps in northern and eastern parts of Europe. Acta Soc. Bot. Pol. 81, 343–357 (2012)

    Article  Google Scholar 

  11. Papp, N., Czégényi, D., Hegedus, A., et al.: The uses of Betula pendula Roth among Hungarian Csángós and Székelys in Transylvania. Romania. Acta Soc. Bot. Pol. 83, 113–122 (2014)

    Article  Google Scholar 

  12. Zyryanova, A.O., Terazawa, M., Koike, T., et al.: White birch trees as resource species of russia: their distribution, ecophysiological features, Multiple Utilizations. Eurasian J. For Res. 13, 25–40 (2010)

    Google Scholar 

  13. Wnorowski, A., Bilek, M., Stawarczyk, K., et al.: Metabolic activity of tree saps of different origin towards cultured human cells in the light of grade correspondence analysis and multiple regression modeling. Acta Soc. Bot. Pol. 86, 2–10 (2017)

    Article  Google Scholar 

  14. Lazutka, J.R.: Genotoxicity of dill (Anethum graveolens L.), peppermint (Mentha×piperita .L) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster. Food Chem. Toxicol. 39, 485–492 (2001)

    Article  Google Scholar 

  15. Sacchetti, G., Maietti, S., Muzzoli, M., et al.: Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91, 621–632 (2005)

    Article  Google Scholar 

  16. Willför, S., Sundberg, A., Hemming, J., et al.: Polysaccharides in some industrially important softwood species. Wood Sci. Technol. 39, 245–258 (2005)

    Article  Google Scholar 

  17. Rezzoug, S.A.: Optimization of steam extraction of oil from maritime pine needles. J. Wood Chem. Technol. 29, 87–100 (2009)

    Article  Google Scholar 

  18. Meullemiestre, A., Petitcolas, E., Maache-Rezzoug, Z., et al.: Isolation of volatils from maritime pine sawdust waste by different processes: ultrasound, microwave, turbohydrodistillation, and hydrodistillation. Wood Mater. Sci. Eng. 9, 76–83 (2014)

    Article  Google Scholar 

  19. McDonald, A.G., Steward, D., Franich, R.A.: Monoterpene composition of radiata pine (Pinus radiata D.Don) sapwood from a 13 year old progeny trial. Holz Roh Werkst. 57, 301–302 (1999)

    Article  Google Scholar 

  20. Cronn, D.R., Truitt, S.G., Campbell, M.J.: Chemical characterization of plywood veneer dryer emissions. Atmos. Environ. 17, 201–211 (1983)

    Article  Google Scholar 

  21. Rathke, J., Stratev, D.: Analysis of the chemical constituents of dry-kiln condensate and its technological recovery -part 1: Volatile extractives. BioResources 8, 5783–5793 (2013)

    Google Scholar 

  22. McDonald, A.G., Dare, P.H., Gifford, J.S., et al.: Assessment of air emissions from industrial kiln drying of pinus radiata wood. Holz Roh Werkst. 60, 181–190 (2002)

    Article  Google Scholar 

  23. Selik, M.: Applicability of ehrlich’s reagent for differentiation of three turkish firs species (Abies Norbmanniana, A. Bornmülleriana and A. Equi - Trojani) woods. Rev LA Fac DES Sci for L’ Universite D’Istanbul 2, 1–7 (1976)

    Google Scholar 

  24. McDonald, A.G., Gifford, J.S., Dare, P.H., et al.: Characterisation of the condensate generated from vacuum-drying of radiata pine wood. Holz Roh Werkst. 57, 253–258 (1999)

    Google Scholar 

  25. Ledig, S. Lavik, I. Broege, M. Characterization and Treatment of the Condensate Generated from Steaming of Beech Timber prior to Kiln-Drying. In: 8th International IUFRO Wood Drying Conference. (2003).

  26. Ayrilmis, N., Kapti, T., Gürel, A., et al.: Effect of wood-drying condensate on emission of volatile organic compounds and bonding properties of fibreboard. J. Bionic. Eng. 17, 206–214 (2020)

    Article  Google Scholar 

  27. Burtin, P., Jay-Allemand, C., Charpentier, J.P., et al.: Modifications of hybrid walnut (Juglans nigra 23 × Juglans regia) wood colour and phenolic composition under various steaming conditions. Holzforschung 54, 33–38 (2000)

    Article  Google Scholar 

  28. Branca, C., Iannace, A.D., Blasi, C.: Devolatilization and combustion kinetics of Quercus cerris bark. Energy Fuels. 21, 1078–1084 (2007)

    Article  Google Scholar 

  29. Kofujita, H., Ettyu, K., Ota, M.: Characterization of the major components in bark from five Japanese tree species for chemical utilization. Wood Sci. Technol. 33, 223–228 (1999)

    Article  Google Scholar 

  30. Granström, K.M., Sandberg, M.: Characterization of wood-dryer condensate with assessment of toxicity to microorganisms. J. Environ. Eng. 43, 04017019 (2017)

    Article  Google Scholar 

  31. Ali, M., Sreekrishnan, T.R.: Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5, 175–196 (2001)

    Article  Google Scholar 

  32. Ashrafi, O., Yerushalmi, L., Haghighat, F.: Wastewater treatment in the pulp-and-paper industry: a review of treatment processes and the associated greenhouse gas emission. J. Environ. Manage. 158, 146–157 (2015)

    Article  Google Scholar 

  33. Kamali, M., Khodaparast, Z.: Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol. Environ. Saf. 114, 326–342 (2015)

    Article  Google Scholar 

  34. Stoica, A., Sandberg, M., Holby, O.: Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills. Bioresour. Technol. 100, 3497–3505 (2009)

    Article  Google Scholar 

  35. Sandberg, M.: Mill case, simulation, and laboratory plant study of black liquor spill effects on a multiple stage biological treatment plant. J. Environ. Eng. Sci. 8, 181–191 (2013)

    Article  Google Scholar 

  36. Bicho, P.A., Chen, T., Avramidis, S., et al.: Characterization and treatment of condensates generated from softwoods that have been radio frequency/vacuum kiln dried. For. Prod J. 46, 51–56 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuz Bayraktar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, M.D., Uslu, M.E. & Bayraktar, O. Antioxidant, Antimicrobial, and Cytotoxic Activities of Condensate from Rf-Vacuum Timber Drying Process in the Forestry Industry. Waste Biomass Valor 12, 5079–5086 (2021). https://doi.org/10.1007/s12649-021-01378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01378-1

Keywords

Navigation