Skip to main content
Log in

Phytochemical Profile and Bioactivity of Industrial Rapeseed Meal Ethanol-Wash Solutes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Rapeseed meal is a by-product of oil producing industry which contains a high amount of protein (37–42%). To prepare protein isolates, suitable for human nutrition, the industrial rapeseed meal is often subjected to a pre-treatment with aqueous ethanol solution. The aim of the study was to investigate the phytochemical profile and bioactivity of the ethanol-wash solutes (EWS) obtained as a waste product of the main process of the protein isolate preparation from industrial rapeseed meal. Proximate composition analysis revealed that total carbohydrates were more than half of the product (60.63%). The content of hydrolysable reducing sugars was 44.13%, while glucose was 7.22%. The total phenols amounted 13.38%. EWS contained 1.63% total flavonoids and 242.05 µmol/g dry weight glucosinolates. The major components, as determined by GC–MS analysis, were sucrose, turanose and melibiose with 22.68%, 4.08% and 3.97% of total ion current (TIC) of polar compounds, respectively; cetyl alcohol (2.45% of TIC) and methyl oleate (2.08% of TIC) representing nonpolar compounds, and sinapic acid (73.71% of TIC) which was the prevailing substance of the phenolic acids identified in the EWS. The 0.2% EWS, prepared in aqueous 70% ethanol solution, exhibited 70.68% scavenging capability of DPPH radicals and 585.11 µmol Fe2+/g EWS (dry weight) reducing capacity. The product demonstrated limited antibacterial but broad antifungal activity which was expressed against Aspergillus niger (ATCC 1015), Aspergillus flavus, Penicillium sp., Rhizopus sp. and Fusarium moniliforme (ATCC 38932) as determined by the agar-well diffusion assay. Overall, EWS exhibited bioactive capacity, which revealed its potential application as a value-added product in the food and nutraceutical industries or agriculture. The broad-spectrum antifungal activity makes the product a prospective agent for food biopreservation or plant bioprotection.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szydłowska-Czerniak, A.: Rapeseed and its products—sources of bioactive compounds: a review of their characteristics and analysis. Crit. Rev. Food Sci. Nutr. 53(4), 307–330 (2013)

    Article  Google Scholar 

  2. Krautgartner, R., Lefebvre, L., Rehder, L.E., Boshnakova, M.: EU-28: Oilseeds and Products Annual. GAIN Report Number: AU1904 (2019) https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Oilseeds%20and%20Products%20Annual_Vienna_EU-28_3-28-2019.pdf. Accessed Jan 2019

  3. Newkirk, R.: Canola meal: feed industry guide (2009) https://cigi.ca/wpcontent/uploads/2011/12/2009-Canola_Guide.pdf. Accessed Jan 2019

  4. Statista, The Statistics Portal (2012) http://www.statista.com/statistics/263930/worldwideproduction-of-rapeseed-by-country. Accessed Sept 2017

  5. Kondili, E.M., Kaldellis, J.K.: Biofuel implementation in East Europe: current status and future prospects. Renew. Sust. Energ. Rev. 11, 2137–2151 (2007)

    Article  Google Scholar 

  6. Carré, P., Pouzet, A.: Rapeseed market, worldwide and in Europe. OCL 21, D102 (2014). https://doi.org/10.1051/ocl/2013054

    Article  Google Scholar 

  7. Ivanova, R.: Rapeseed—The Culture of Present and Future. Videnov & Son, Sofia (2012)

    Google Scholar 

  8. Raza, S., Ashraf, M., Pasham, T.N., Latif, F.: Effect of enzyme supplementation of broiler diets containing varying level of sunflower meal and crude fiber. Pak. J. Bot. 41, 2543–2550 (2009)

    Google Scholar 

  9. Ivanova, P., Chalova, V., Uzunova, G., Koleva, L., Manolov, I.: Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agric. Agric. Sci. Procedia 10, 55–62 (2016)

    Google Scholar 

  10. Wanasundara, J.P., McIntosh, T.C., Perera, S.P., Withana-Gamage, T.S., Mitra, P.: Canola/rapeseed protein-functionality and nutrition. OCL 23(4), D407 (2016). https://doi.org/10.1051/ocl/2016028

    Article  Google Scholar 

  11. Liu, Y., Zhou, M., Liu, M.: A survey of nutrients and toxic factors in commercial rapeseed meal in China and evaluation of detoxification by water extraction. Anim. Feed Sci. Technol. 45, 257–270 (1994)

    Article  Google Scholar 

  12. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., Marc, I.: Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem. 42(10), 1419–1428 (2007)

    Article  Google Scholar 

  13. FDA (Food and Drug Administration): Preparation of premarket submissions for food contact substances: chemistry recommendations (2007) http://www.cfsan.fda.gov/∼dms/opa3pmnc.html. Accessed Jan 2008

  14. Slawski, H., Adem, H., Tressel, R., Wysujack, K., Koops, U., Kotzamanis, Y., Wuertz, S., Schulz, C.: Total fish meal replacement with rapeseed protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Int. 20, 443–453 (2012)

    Article  Google Scholar 

  15. Adem, H.N., Tressel, R., Pudel, F., Slawski, H., Schulz, C.: Rapeseed use in aquaculture. OCL 21(1), D105 (2014). https://doi.org/10.1051/ocl/2013041

    Article  Google Scholar 

  16. Kalaydzhiev, H., Ivanova, P., Silva, C.L., Chalova, V.I.: Functional properties of protein isolate and acid soluble protein-rich ingredient co-produced from ethanol-treated industrial rapeseed meal. Polish J. Food Nutr. Sci. 62(2), 129–136 (2019)

    Article  Google Scholar 

  17. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. 37(8), 911–917 (1959)

    Google Scholar 

  18. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  19. Dekker, K.D.: The Luff-Schoorl method for determination of reducing sugar in juices, molasses and sugar. S. Afr. Sugar J. 34, 157–171 (1950)

    Google Scholar 

  20. Hill, J.B., Kessler, G.: An automated determination of glucose utilizing a glucose oxidase-peroxidase system. J. Lab. Clin. Med. 57(6), 970–980 (1961)

    Google Scholar 

  21. Bradford, M.: A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  22. ICC Standard No.104/: Determination of ash in cereals and cereal products. Approved 1960, Revised 1990 (1990)

  23. Petkova, N., Ivanov, I., Denev, P., Pavlov, A.: Bioactive substance and free radical scavenging activities of flour from Jerusalem artichoke (Helianthus tuberosus L.) tubers—a comparative study. Turk. J. Agric. Nat. Sci. 1(Special Issue 2), 1773–1778 (2014)

    Google Scholar 

  24. Jezek, J., Haggett, B.G.D., Atkinson, A., Rawson, D.M.: Determination of glucosinolates using their alkaline degradation and reaction with ferricyanide. J. Agric. Food Chem. 47, 4669–4674 (1999)

    Article  Google Scholar 

  25. Kivrak, I., Duru, M.E., Öztürk, M., Mercan, N., Harmandar, M., Topçu, G.: Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 116(2), 470–479 (2009)

    Article  Google Scholar 

  26. ISO 11885:2007. Water quality-determination of selected elementsby inductively coupled plasma optical emission spectrometry (ICP-OES). http://www.iso.org/iso/catalogue_detail.htm?csnumber=36250. Accessed 6 Jan 2019

  27. BDS 11374. http://www.bdsbg.org/bg/standard/?natstandard_document_id=5976. Accessed 16 Feb 2019

  28. Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., Willmitzer, L.: Simultaneous analysis of metabolites inpotato tuber by gas chromatography-mass spectrometry. Plant J. 23, 131–142 (2000)

    Article  Google Scholar 

  29. Dimov, I., Petkova, N., Nakov, G., Taneva, I., Ivanov, I., Stamatovska, V.: Improvement of antioxidant potential of wheat flours and breads by addition of medicinal plants. Ukr. Food J. 7(4), 671–681 (2018)

    Article  Google Scholar 

  30. Ivanov, I., Vrancheva, R.Z., Marchev, A.S., Petkova, N.T., Aneva, I.Y., Denev, P.P., Georgieva, V.G., Pavlov, A.I.: Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. App. Sci. 3(2), 296–306 (2014)

    Google Scholar 

  31. Irshad, M., Zafaryab, M., Singh, M., Rizvi, M.: Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem. (2012). https://doi.org/10.1155/2012/157125

    Article  Google Scholar 

  32. Chalova, V.I., Crandall, P.G., Ricke, S.C.: Microbial inhibitory and radical scavenging activities of cold-pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents. J. Sci. Food Agric. 90(5), 870–876 (2010)

    Article  Google Scholar 

  33. Yan, X., Nagata, T., Fan, X.: Antioxidative activities in some common seaweeds. Plant Foods Hum. Nutr. 52, 253–262 (1998)

    Article  Google Scholar 

  34. Tumbarski, Y., Deseva, I., Mihaylova, D., Stoyanova, M., Krastev, L., Nikolova, R., Yanakieva, V., Ivanov, I.: Isolation, characterization and amino acid composition of a bacteriocin produced by Bacillus methylotrophicus strain BM47Food Technol. Biotechnol. 56(4), 546–552 (2018)

    Google Scholar 

  35. Ivanova, P., Kalaydzhiev, H., Rustad, T., Silva, C.L., Chalova, V.I.: Comparative biochemical profile of protein-rich products obtained from industrial rapeseed meal. Emir. J. Food Agric. 29(3), 170–178 (2017)

    Article  Google Scholar 

  36. Kalaydzhiev, H., Georgiev, R., Ivanova, P., Stoyanova, M., Silva, C.L., Chalova, V.I.: Enhanced solubility of rapeseed meal protein isolates prepared by sequential isoelectric precipitation. Foods 9(6), 703 (2020). https://doi.org/10.3390/foods9060703

    Article  Google Scholar 

  37. Bell, J.M.: Factors affecting the nutritional value of canola meal: a review. Can. J. Anim. Sci. 73(4), 689–697 (1993)

    Article  Google Scholar 

  38. Siddiqui, I.R., Wood, P.J.: Carbohydrates of rapeseed: a review. J. Sci. Food Agric. 28(6), 530–538 (1977)

    Article  Google Scholar 

  39. Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.C., Fine, F.: Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 95(5), 1105–1114 (2012)

    Article  Google Scholar 

  40. Naher, U.A., Radziah, O., Halimi, M.S., Shamsuddin, Z.H., Razi, I.M.: Specific growth rate and carbon sugar consumption of diazotrophs isolated from rice rhizosphere. J. Biol. Sci 8, 1008–1014 (2008)

    Article  Google Scholar 

  41. Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O.J., Castro, C.: Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10(6), 639 (2017). https://doi.org/10.3390/ma10060639

    Article  Google Scholar 

  42. Bonestroo, M.H., Kusters, B.J.M., De Wit, J.C., Rombouts, F.M.: Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads. Int. J. Food Microbiol. 15(3–4), 365–376 (1992)

    Article  Google Scholar 

  43. Chen, K., Zhang, H., Miao, Y., Wei, P., Chen, J.: Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb. Technol. 48(4–5), 339–344 (2011)

    Article  Google Scholar 

  44. Dias, D.A., Hill, C.B., Jayasinghe, N.S., Atieno, J., Sutton, T., Roessner, U.: Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J. Chromatogr. B 1000, 1–13 (2015)

    Article  Google Scholar 

  45. Park, M.O., Lee, B.H., Lim, E., Lim, J.Y., Kim, Y., Park, C.S., Lee, H.G., Kang, H.K., Yoo, S.H.: Enzymatic process for high-yield turanose production and its potential property as an adipogenesis regulator. J. Agric. Food Chem. 64, 4758–4764 (2016)

    Article  Google Scholar 

  46. Chung, J.Y., Kim, Y.S., Kim, Y., Yoo, S.H.: Regulation of inflammation by sucrose isomer, Turanose, in raw 264.7 cells. J Cancer Prev. 22(3), 195–201 (2017)

    Article  Google Scholar 

  47. Park, Y., Oh, I.K., Park, S.W., Ryu, K., Lee, S.: Elucidation of rheological, microstructural, water mobility, and noodle-making properties of rice flour affected by turanose. Food Chem. 276, 9–14 (2019)

    Article  Google Scholar 

  48. Shahidi, F.: Canola and Rapeseed: Production, Chemistry, Nutrition, and Processing Technology. Van Nostrand Reinhold, New York (1990)

    Book  Google Scholar 

  49. Ayton, J.: Variability of Quality Traits in Canola Seed, Oil and Meal—A Review. NSW Department of Primary Industries, New South Wales (2014)

    Google Scholar 

  50. Sakhno, L.O.: Variability in the fatty acid composition of rapeseed oil: classical breeding and biotechnology. Cytol. Genet. 44(6), 389–397 (2010)

    Article  Google Scholar 

  51. Kazmi, A.: Advanced oil crop biorefineries. RSC Green Chemistry No. 14. Royal Society of Chemistry, London (2012)

    Google Scholar 

  52. Nowak, H., Kujawa, K., Zadernowski, R., Roczniak, B., KozŁowska, H.: Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Lipid/Fett 94(4), 149–152 (1992)

    Article  Google Scholar 

  53. Shahidi, F., Naczk, M.: An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J. Am. Oil Chem. Soc. 69(9), 917–924 (1992)

    Article  Google Scholar 

  54. Das Purkayastha, M., Gogoi, J., Kalita, D., Chattopadhyay, P., Nakhuru, K.S., Goyary, D., Mahanta, C.L.: Physicochemical and functional properties of rapeseed protein isolate: influence of antinutrient removal with acidified organic solvents from rapeseed meal. J. Agric. Food Chem. 62(31), 7903–7914 (2014)

    Article  Google Scholar 

  55. Hashmi, S.I., Satwadhar, P.N., Khotpal, R.R., Deshpande, H.W., Syed, K.A., Vibhute, B.P.: Rapeseed meal nutraceuticals. J. Oilseed Brass. 1(2), 43–54 (2016)

    Google Scholar 

  56. Kozlowska, H., Naczk, M., Shahidi, F., Zadernowski, R.: Phenolic acids and tannins in rapeseed and canola. In: Shahidi, F. (ed.) Canola and Rapeseed. Production, Chemistry, Nutrition and Processing Technology, pp. 193–210. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  57. Halkier, B.A., Gershenzon, J.: Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57(1), 303–333 (2006)

    Article  Google Scholar 

  58. McNaughton, S.A., Marks, G.C.: Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br. J. Nutr. 90, 687–697 (2003)

    Article  Google Scholar 

  59. Possenti, M., Baima, S., Raffo, A., Durazzo, A., Giusti, A.M., Natella, F.: Glucosinolates in food. In: Mérillon, J.-M., Ramawat, K.G. (eds.) Glucosinolates. Reference Series in Phytochemistry, pp. 87–132. Springer, Cham (2016)

    Google Scholar 

  60. Aliasgharpour, M., Farzami, M.: Trace elements in human nutrition: a review. Int. J. Med. Invest. 2, 115–128 (2013)

    Google Scholar 

  61. Venardos, K., Harrison, G., Headrick, J., Perkins, A.: Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemia–reperfusion. J. Trace Elem. Med. Biol. 18(1), 81–88 (2004)

    Article  Google Scholar 

  62. Al-Ahmary, K.M.: Selenium content in selected foods from the Saudi Arabia market and estimation of the daily intake. Arabian J. Chem. 2, 95–99 (2009)

    Article  Google Scholar 

  63. Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., Martins, L.L.: Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci. 16, 17975–17998 (2015)

    Article  Google Scholar 

  64. Zhou, K., Yu, L.: Effects of extraction solvent on wheat bran antioxidant activity estimation. Lebensm. Wiss. Technol. 37, 717–721 (2004)

    Article  Google Scholar 

  65. Kerchev, P., Ivanov, S.: Influence of extraction techniques and solvents on the antioxidant capacity of plant material. Biotechnol. Biotechnol. Equip. 22, 556–559 (2008)

    Article  Google Scholar 

  66. Abe, N., Nemoto, A., Tsuchiya, Y., Hojo, H., Hirota, A.: Studies on the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci. Biotechnol. Biochem. 64, 306–313 (2000)

    Article  Google Scholar 

  67. Halliwell, B., Gutteridge, J.M., Aruoma, O.I.: The deoxyribose method: a simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215–219 (1987)

    Article  Google Scholar 

  68. Valentão, P., Fernandes, E., Carvalho, F., Andrade, P.B., Seabra, R.M., Bastos, M.L.: Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J. Agric. Food Chem. 50(17), 4989–4993 (2002)

    Article  Google Scholar 

  69. Wanasundara, U.N., Amarowicz, R., Shahidi, F.: Partial characterization of natural antioxidants in canola meal. Food Res. Int. 28(6), 525–530 (1995)

    Article  Google Scholar 

  70. Wilson, D.W., Nash, P., Buttar, H.S., Griffiths, K., Singh, R., De Meester, F., Horiuchi, R., Takahashi, T.: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview. Antioxidants 6(4), 81 (2017)

    Article  Google Scholar 

  71. Kazakov, Y., Tarasov, A., Alyoshina, L., Brainina, K.: Interplay between antioxidant activity, health and disease. Biointerface Res. Appl. Chem. 10(1), 4893–4901 (2019)

    Article  Google Scholar 

  72. Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C.: Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 10, 829 (2019)

    Article  Google Scholar 

  73. Smolinska, U., Morra, M.J., Knudsen, G.R., James, R.L.: Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis. 87, 407–412 (2003)

    Article  Google Scholar 

  74. Sarwar, M., Kirkegaard, J.A., Wong, P.T.W., Desmarchelier, J.M.: Biofumigation potential of brassicas. III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201, 103–112 (1998)

    Article  Google Scholar 

  75. Padmavati, M., Sakthivel, N., Thara, K.V., Reddy, A.R.: Differential sensitivity of rice pathogens to growth inhibition by favonoids. Phytochemistry 46, 499–502 (1997)

    Article  Google Scholar 

  76. Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., Nicot, P.C.: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 6, 566 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Bulgarian National Science Fund, project № KП-06-H37/21 “An integrated approach for efficient utilization of by-products of vegetable oil producing industry: Sunflower and rapeseed meals”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesela I. Chalova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiev, R., Ivanov, I.G., Ivanova, P. et al. Phytochemical Profile and Bioactivity of Industrial Rapeseed Meal Ethanol-Wash Solutes. Waste Biomass Valor 12, 5051–5063 (2021). https://doi.org/10.1007/s12649-021-01373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01373-6

Keywords

Navigation