Skip to main content
Log in

Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel protease-producing actinobacterium, designated strain NEAU-A11T, was isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China, and characterised using a polyphasic approach. The hydrolytic enzymes, such as proteases, played critical roles in destruction of fungi by degrading the protein linkages to disrupt integrity in the cell wall. This suggested that the isolate could be a good biocontrol candidate against pathogens to control fungal diseases. On the basis of 16S rRNA gene sequence analysis, strain NEAU-A11T was indicated to belong to the genus Actinoplanes and was most closely related to Actinoplanes rectilineatus JCM 3194 T (98.9%). Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were arabinose, xylose and glucose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were C18:0, C16:0, C18:1 ω9c, C17:0 and C15:0. Genome sequencing revealed a genome size of 10,742,096 bp, a G + C content of 70.5% and 9,514 protein-coding genes (CDS), including 102 genes coding for protease. Moreover, Genome analysis showed that strain NEAU-A11T contained 255 glycoside hydrolases (GHs), 152 glycosyl transferases (GTs), 40 carbohydrate esterases (CEs), 26 polysaccharide lyases (PLs), and 12 auxiliary activities (AAs) genes. Genome mining analysis using antiSMASH 5.0 led to the identification of 20 putative gene clusters responsible for the production of diverse secondary metabolites. Phylogenetic analysis using the 16S rRNA gene sequences showed that the strain formed a stable clade with A. rectilineatus JCM 3194 T in the genus Actinoplanes. Whole-genome phylogeny showed strain NEAU-A11T formed a stable phyletic line with Actinoplanes lutulentus DSM 45883 T (97.6%). However, whole-genome average nucleotide identity value between strain NEAU-A11T and its reference strains A. rectilineatus JCM 3194 T and A. lutulentus DSM 45883 T were found to be 81.1% and 81.6%, respectively. The levels of digital DNA-DNA hybridization between them were 24.6% (22.2–27.0%) and 24.8% (22.5–27.3%), respectively. The values were well below the criteria for species delineation of 70% for dDDH and 95–96% for ANI, suggesting that the isolate differed genetically from its closely related type strain. The content of G + C in genomic DNA was 70.5%, within the range of 67–76%. In addition, evidences from phenotypic, chemotaxonomic and genotypic studies indicated that strain NEAU-A11T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes aureus sp. nov. is proposed, with NEAU-A11T (= CCTCC AA 2019063 T = JCM 33971 T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain NEAU-A11T is MW272536. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JADQTO000000000. The version described in this paper is version JADQTO000000000.1.

Abbreviations

ANI:

Average nucleotide identity

BA:

Bennett’s agar

CA:

Czapek’s agar

CCTCC:

China Center for type Culture Collection

dDDH:

Digital DNA:DNA hybridization

DPG:

Diphosphatidylglycerol

DSM:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

GC–MS:

Gas Chromatography-Mass Spectrometer

GY:

Glucose-yeast extract medium

ISCC-NBS:

Inter-society color council-national bureau of standards

ISP:

International Streptomyces Project

JCM:

Japan Collection of Microorganisms

MEGA:

Molecular Evolutionary Genetics Analysis

NA:

Nutrient agar

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PIM:

Phosphatidylinositolmannoside

TLC:

Thin-Layer Chromatography

References

  • Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. ChemBioChem 12:439–448

    Article  CAS  PubMed  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Li C, Tan K, Liu C, Xu X, Zhang S, Wang X, Zhao J, Xiang W (2020) Characterization, phylogenetic analyses and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang province, China. Plant Dis 104:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

    Article  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284

    Google Scholar 

  • Couch JN (1950) Actinoplanes, a new genus of the Actinomycetales. J Gen Microbiol 4:280–292

    Article  Google Scholar 

  • Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang YY, Luo XC (2018) Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 112:35–42

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Li C, Xing J, Wang X, Xiang W (2014a) Actinoplanes lutulentus sp. nov., isolated from mucky soil in China. Int J Syst Evol Microbiol 64:1782–1788

    Article  CAS  PubMed  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014b) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 136:19–36

    Article  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol 5:123–127

    Article  Google Scholar 

  • Habib N, Khan IU, Chu X, Xiao M, Li S, Fang BZ, Zhi XY, Li WJ (2018) Actinoplanes deserti sp. nov., isolated from a desert soil sample. Antonie Van Leeuwenhoek 111:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Tamura T, Nonomura H (1991) Selective isolation of Actinoplanes and Dactylosporangium from soil by using γ-collidine as the chemoattractant. J Ferment Bioeng 72:426–432

    Article  CAS  Google Scholar 

  • Higgins ML (1967) Release of sporangiospores by a strain of Actinoplanes. J Bacteriol 94:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ren SX, Yang S, Hu HF (2015) Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902–109 and Streptomyces hygroscopicus ATCC29253. Chin J Nat Med 13:90–98

    CAS  PubMed  Google Scholar 

  • Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P, Sosio M, Bonezzi F, Summa M, Brunati C, Bordoni R, Corti G, Tarozzo G, Piomelli D, Reggiani A, Donadio S (2014) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9:398–404

    Article  CAS  PubMed  Google Scholar 

  • Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 103:399–408

    Article  CAS  PubMed  Google Scholar 

  • Jin LY, Zhao Y, Song W, Duan LP, Jiang SW, Wang XJ, Zhao JW, Xiang WS (2019) Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 69:688–695

    Article  CAS  PubMed  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours. US Government Printing Office, Washington, DC

    Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W (2019) Antifungal, plant growth-promoting, and genomic properties of an Endophytic Actinobacterium streptomyces sp. NEAU-S7GS2. Front Microbiol 10:2077

    Article  PubMed  PubMed Central  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Parenti F, Coronelli C (1979) Members of the genus Actinoplanes and their antibiotics. Annu Rev Microbiol 33:389–411

    Article  CAS  PubMed  Google Scholar 

  • Phongsopitanun W, Matsumoto A, Inahashi Y, Kudo T, Mori M, Shiomi K, Takahashi Y, Tanasupawat S (2016) Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 66:468–473

    Article  CAS  PubMed  Google Scholar 

  • Piao CY, Zheng WW, Li Y, Liu CX, Jin L, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199:963–970

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Fischer N, Steinkämper A, Pühler A, Biener R, Schwartz D, Kalinowski J (2014) Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG 010964, producer of the lipopeptide antibiotic friulimycin. J Biotechnol 178:41–42

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sazak A, Sahin N, Camas M (2012) Actinoplanes abujensis sp. nov., isolated from Nigerian arid soil. Int J Syst Evol Microbiol 62:960–965

    Article  CAS  PubMed  Google Scholar 

  • Schwientek P, Szczepanowski R, Rückert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Pühler A (2012) The complete genome sequence of the acarbose producer Actinoplanes sp SE50/110. BMC Genom 13:112

    Article  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Simone M, Monciardini P, Gaspari E, Donadio S, Maffioli SI (2013) Isolation and characterization of NAI-802, a new lantibiotic produced by two different Actinoplanes strains. J Antibiot (Tokyo) 66:73–78

    Article  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Song J, Qiu SW, Zhao JW, Han CY, Ying W, Sun XJ, Jiang SW, Wang XJ, Xiang WS (2019) Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie Van Leeuwenhoek 112:765–773

    Article  CAS  PubMed  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    Article  CAS  PubMed  Google Scholar 

  • Suriyachadkun C, Ngaemthao W, Chunhametha S, Sanglier JJ (2015) Actinoplanes luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 65:4227–4232

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Hatano K (2001) Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. Nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51:2119–2125

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Jang MS, Ohnishi Y, Horinouchi S, Hayakawa M, Fujita N, Aizawa S (2011) Characterization of Actinoplanes missouriensis spore flagella. Appl Environ Microbiol 77:2559–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wink J, Schumann P, Spöer C, Eisenbarth K, Glaeser SP, Martin K, Kämpfer P (2014) Emended description of Actinoplanes friuliensis and description of Actinoplanes nipponensis sp. nov., antibiotic-producing species of the genus Actinoplanes. Int J Syst Evol Microbiol 64:599–606

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiol [English Transl Microbiol (Beijing)] 16:176–178

    CAS  Google Scholar 

  • Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Fan L, Pang H, Xin Y, Zhang X (2012) Actinoplanes atraurantiacus sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2533–2537

    Article  CAS  PubMed  Google Scholar 

  • Zhao JW, Han LY, Yu MY, Cao P, Li DM, Guo XW, Liu YQ, Wang XJ, Xiang WS (2019) Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 7:360

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Aharon Oren for his valuable help with naming the species.

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (No. 31972291), the China Postdoctoral Science Foundation (2015M580255), the Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Z15016), and the “Academic Backbone” Project of Northeast Agricultural University (19XG18).

Author information

Authors and Affiliations

Authors

Contributions

JS performed the laboratory experiments, designed the experiments and revised the manuscript. XS performed the laboratory experiments, analysed the data, and drafted the manuscript. XL contributed to the biochemical characterisation. CH and ZH contributed to the polyphasic taxonomy. JZ contributed to the fatty acids determination. BH and XD contributed to the morphological analyses. XW and WX participated to the discussions of each section of experiments, designed the experiments and revised the manuscript.

Corresponding authors

Correspondence to Xiangjing Wang or Wensheng Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate and/or Consent to publish

This research doesn’t involve human subjects, so the informed consent to participate and consent to publish are not obtained.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Informed consent

All authors have seen a copy of the manuscript and have approved its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Sun, X., Luo, X. et al. Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil. Antonie van Leeuwenhoek 114, 1517–1527 (2021). https://doi.org/10.1007/s10482-021-01617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01617-4

Keywords

Navigation