Skip to main content
Log in

Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P. Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe). Epilepsia 2005, 46: 470–472.

    PubMed  Google Scholar 

  2. Bonansco C, Fuenzalida M. Plasticity of hippocampal excitatory-inhibitory balance: Missing the synaptic control in the epileptic brain. Neural Plast 2016, 2016: 8607038.

    PubMed  PubMed Central  Google Scholar 

  3. Dargan SL, Schwaller B, Parker I. Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins. J Physiol 2004, 556: 447–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hua R, Wang X, Chen X, Wang X, Huang P, Li P, et al. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr Biol 2018, 28: 3948-3959.e4.

    CAS  PubMed  Google Scholar 

  5. Tóth K, Eross L, Vajda J, Halász P, Freund TF, Maglóczky Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 2010, 133: 2763–2777.

    PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Xu CL, Xu ZH, Ji CH, Liang J, Wang Y, et al. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron 2017, 95: 1221.

    CAS  PubMed  Google Scholar 

  7. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, et al. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci 2003, 23: 3469–3477.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers JH. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 1987, 105: 1343–1353.

    CAS  PubMed  Google Scholar 

  9. McDonald AJ. Calretinin immunoreactive neurons in the basolateral amygdala of the rat and monkey. Brain Res 1994, 667: 238–242.

    CAS  PubMed  Google Scholar 

  10. Barinka F, Druga R. Calretinin expression in the mammalian neocortex: A review. Physiol Res 2010, 59: 665–677.

    CAS  PubMed  Google Scholar 

  11. Palczewska M, Batta G, Groves P, Linse S, Kuznicki J. Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Sci 2005, 14: 1879–1887.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwaller B. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2010, 2: e004051.

    Google Scholar 

  13. Camp AJ, Wijesinghe R. Calretinin: Modulator of neuronal excitability. Int J Biochem Cell Biol 2009, 41: 2118–2121.

    CAS  PubMed  Google Scholar 

  14. Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 2007, 32: 471–482.

    CAS  PubMed  Google Scholar 

  15. Zang K, Zhang YW, Hu J, Wang Y. The large conductance calcium- and voltage-activated potassium channel (BK) and epilepsy. CNS Neurol Disord Drug Targets 2018, 17: 248–254.

    CAS  PubMed  Google Scholar 

  16. Wang Y, Liang J, Chen LY, Shen YT, Zhao JL, Xu CL, et al. Pharmaco-genetic therapeutics targeting parvalbumin neurons attenuate temporal lobe epilepsy. Neurobiol Dis 2018, 117: 149–160.

    CAS  PubMed  Google Scholar 

  17. Freund TF, Maglóczky Z. Early degeneration of calretinin-containing neurons in the rat hippocampus after ischemia. Neuroscience 1993, 56: 581–596.

    CAS  PubMed  Google Scholar 

  18. Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003, 24: 603–613.

    CAS  PubMed  Google Scholar 

  19. Andressen C, Blümcke I, Celio MR. Calcium-binding proteins: Selective markers of nerve cells. Cell Tissue Res 1993, 271: 181–208.

    CAS  PubMed  Google Scholar 

  20. Jiang M, Swann JW. Expression of calretinin in diverse neuronal populations during development of rat hippocampus. Neuroscience 1997, 81: 1137–1154.

    CAS  PubMed  Google Scholar 

  21. Abraham H, Meyer G. Reelin-expressing neurons in the postnatal and adult human hippocampal formation. hippocampus 2003, 13: 715–727.

    CAS  PubMed  Google Scholar 

  22. Martínez-Cerdeño V, Noctor SC. Cajal, retzius, and Cajal-retzius cells. Front Neuroanat 2014, 8: 48.

    PubMed  PubMed Central  Google Scholar 

  23. Anstötz M, Lee SK, Neblett TI, Rune GM, Maccaferri G. Experience-dependent regulation of Cajal-retzius cell networks in the developing and adult mouse hippocampus. Cereb Cortex 2018, 28: 672–687.

    PubMed  Google Scholar 

  24. Yang ZG, You Y, Levison SW. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol 2008, 511: 19–33.

    PubMed  PubMed Central  Google Scholar 

  25. Ueno M, Sugimoto M, Ohtsubo K, Sakai N, Endo A, Shikano K, et al. The effect of electroconvulsive seizure on survival, neuronal differentiation, and expression of the maturation marker in the adult mouse hippocampus. J Neurochem 2019, 149: 488–498.

    CAS  PubMed  Google Scholar 

  26. Gurden H, Schiffmann SN, Lemaire M, Böhme GA, Parmentier M, Schurmans S. Calretinin expression as a critical component in the control of dentate gyrus long-term potentiation induction in mice. Eur J Neurosci 1998, 10: 3029–3033.

    CAS  PubMed  Google Scholar 

  27. Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam V, et al. Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci USA 1997, 94: 10415–10420.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barsy B, Kocsis K, Magyar A, Babiczky Á, Szabó M, Veres JM, et al. Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat Neurosci 2020, 23: 625–637.

    CAS  PubMed  Google Scholar 

  29. Schiffmann SN, Cheron G, Lohof A, d’Alcantara P, Meyer M, Parmentier M, et al. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A 1999, 96: 5257–5262.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Christel CJ, Schaer R, Wang SY, Henzi T, Kreiner L, Grabs D, et al. Calretinin regulates Ca2+-dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the α12.1 subunit. J Biol Chem 2012, 287: 39766–39775.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic Ataxia. Brain 2004, 127: 2682–2692.

    PubMed  Google Scholar 

  32. Arai R, Jacobowitz DM, Deura S. Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Res Bull 1994, 33: 595–614.

    CAS  PubMed  Google Scholar 

  33. Caputi A, Rozov A, Blatow M, Monyer H. Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb Cortex 2009, 19: 1345–1359.

    PubMed  Google Scholar 

  34. Gulyás AI, Hájos N, Freund TF. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 1996, 16: 3397–3411.

    PubMed  PubMed Central  Google Scholar 

  35. Jacobowitz DM, Winsky L. Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 1991, 304: 198–218.

    CAS  PubMed  Google Scholar 

  36. Résibois A, Rogers JH. Calretinin in rat brain: An immunohistochemical study. Neuroscience 1992, 46: 101–134.

    PubMed  Google Scholar 

  37. Fonseca M, Soriano E. Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer’s disease. Brain Res 1995, 691: 83–91.

    CAS  PubMed  Google Scholar 

  38. Leuba G, Saini K. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis Neurosci 1996, 13: 997–1009.

    CAS  PubMed  Google Scholar 

  39. Saffari R, Grotefeld K, Kravchenko M, Zhang MY, Zhang WQ. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019, 94: 109658.

    CAS  PubMed  Google Scholar 

  40. Evangelio M, García-Amado M, Clascá F. Thalamocortical projection neuron and interneuron numbers in the visual thalamic nuclei of the adult C57BL/6 mouse. Front Neuroanat 2018, 12: 27.

    PubMed  PubMed Central  Google Scholar 

  41. Münkle MC, Waldvogel HJ, Faull RL. The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 2000, 19: 155–173.

    PubMed  Google Scholar 

  42. Nitsch R, Ohm TG. Calretinin immunoreactive structures in the human hippocampal formation. J Comp Neurol 1995, 360: 475–487.

    CAS  PubMed  Google Scholar 

  43. Seress L, Abrahám H, Czéh B, Fuchs E, Léránth C. Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman Primates and humans. hippocampus 2008, 18: 425–434.

    PubMed  Google Scholar 

  44. Jafarian M, Modarres Mousavi SM, Alipour F, Aligholi H, Noorbakhsh F, Ghadipasha M, et al. Cell injury and receptor expression in the epileptic human amygdala. Neurobiol Dis 2019, 124: 416–427.

    CAS  PubMed  Google Scholar 

  45. Zhong K, Wu DC, Jin MM, Xu ZH, Wang Y, Hou WW, et al. Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiol Dis 2012, 48: 20–26.

    PubMed  Google Scholar 

  46. Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 2018, 359: 787–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miettinen R, Gulyás AI, Baimbridge KG, Jacobowitz DM, Freund TF. Calretinin is present in non-pyramidal cells of the rat Hippocampus—II. Co-existence with other calcium binding proteins and GABA. Neuroscience 1992, 48: 29–43.

    CAS  PubMed  Google Scholar 

  48. Gulyás AI, Miettinen R, Jacobowitz DM, Freund TF. Calretinin is present in non-pyramidal cells of the rat Hippocampus—I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 1992, 48: 1–27.

    PubMed  Google Scholar 

  49. Martínez A, Ruiz M, Soriano E. Spiny calretinin-immunoreactive neurons in the hilus and CA3 region of the rat hippocampus: Local axon circuits, synaptic connections, and glutamic acid decarboxylase 65/67 mRNA expression. J Comp Neurol 1999, 404: 438–448.

    PubMed  Google Scholar 

  50. Soriano E, Frotscher M. Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. J Comp Neurol 1993, 333: 435–448.

    CAS  PubMed  Google Scholar 

  51. Blasco-Ibáñez JM, Freund TF. Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 1997, 7: 307–320.

    PubMed  Google Scholar 

  52. Freund TF, Buzsáki G. Interneurons of the hippocampus. hippocampus 1996, 6: 347–470.

    CAS  PubMed  Google Scholar 

  53. Hajos N, Acsady L, Freund TF. Target selectivity and neurochemical characteristics of VIP-immunoreactive interneurons in the rat dentate gyrus. Eur J Neurosci 1996, 8: 1415–1431.

    CAS  PubMed  Google Scholar 

  54. Gao P, Sultan KT, Zhang XJ, Shi SH. Lineage-dependent circuit assembly in the neocortex. Development 2013, 140: 2645–2655.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu ZH, Wang Y, Chen B, Xu CL, Wu XH, Wang Y, et al. Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy. EBioMedicine 2016, 14: 148–160.

    PubMed  PubMed Central  Google Scholar 

  56. Rossini L, de Santis D, Mauceri RR, Tesoriero C, Bentivoglio M, Maderna E, et al. Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 2021, 144: 251–265.

    PubMed  Google Scholar 

  57. Loup F, Picard F, André VM, Kehrli P, Yonekawa Y, Wieser HG, et al. Altered expression of alpha3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 2006, 129: 3277–3289.

    PubMed  Google Scholar 

  58. Fonseca M, déll Río JA, Martínez A, Gómez S, Soriano E. Development of calretinin immunoreactivity in the neocortex of the rat. J Comp Neurol 1995, 361: 177–192.

    CAS  PubMed  Google Scholar 

  59. Melvin NR, Dyck RH. Developmental distribution of calretinin in mouse barrel cortex. Brain Res Dev Brain Res 2003, 143: 111–114.

    CAS  PubMed  Google Scholar 

  60. del Río MR, DeFelipe J. Synaptic connections of calretinin-immunoreactive neurons in the human neocortex. J Neurosci 1997, 17: 5143–5154.

    PubMed  PubMed Central  Google Scholar 

  61. Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 1993, 152: 145–148.

    CAS  PubMed  Google Scholar 

  62. Grateron L, Cebada-Sanchez S, Marcos P, Mohedano-Moriano A, Insausti AM, Muñoz M, et al. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J Chem Neuroanat 2003, 26: 311–316.

    CAS  PubMed  Google Scholar 

  63. Dávila JC, Real MA, Olmos L, Legaz I, Medina L, Guirado S. Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex. J Comp Neurol 2005, 481: 42–57.

    PubMed  Google Scholar 

  64. del Río MR, DeFelipe J. Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol 1996, 369: 472–482.

    PubMed  Google Scholar 

  65. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 1997, 17: 3894–3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kubota Y, Shigematsu N, Karube F, Sekigawa A, Kato S, Yamaguchi N, et al. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 2011, 21: 1803–1817.

    PubMed  Google Scholar 

  67. Kaneko T, Murashima M, Lee T, Mizuno N. Characterization of neocortical non-pyramidal neurons expressing preprotachykinins A and B: A double immunofluorescence study in the rat. Neuroscience 1998, 86: 765–781.

    CAS  PubMed  Google Scholar 

  68. Cauli B, Zhou XJ, Tricoire L, Toussay X, Staiger JF. Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat 2014, 8: 52.

    PubMed  PubMed Central  Google Scholar 

  69. Pfeffer CK, Xue MS, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons. Nat Neurosci 2013, 16: 1068–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci U S A 1981, 78: 6535–6539.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J Neurosci 2004, 24: 8940–8949.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gonchar Y, Burkhalter A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 1997, 7: 347–358.

    CAS  PubMed  Google Scholar 

  73. Xu XM, Roby KD, Callaway EM. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 2006, 499: 144–160.

    CAS  PubMed  Google Scholar 

  74. Battaglia FP, Benchenane K, Sirota A, Pennartz CM, Wiener SI. The hippocampus: Hub of brain network communication for memory. Trends Cogn Sci 2011, 15: 310–318.

    PubMed  Google Scholar 

  75. Wouterlood FG, van Denderen JC, van Haeften T, Witter MP. Calretinin in the entorhinal cortex of the rat: Distribution, morphology, ultrastructure of neurons, and co-localization with gamma-aminobutyric acid and parvalbumin. J Comp Neurol 2000, 425: 177–192.

    CAS  PubMed  Google Scholar 

  76. Gonchar Y, Burkhalter A. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J Neurosci 2003, 23: 10904–10912.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gabbott PL. “subpial fan cell” - A class of calretinin neuron in layer 1 of adult monkey prefrontal cortex. Front Neuroanat 2016, 10: 28.

    PubMed  PubMed Central  Google Scholar 

  78. Liu JH, Liu B, Zhang XY, Yu BC, Guan WQ, Wang K, et al. Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex. Mol Brain 2014, 7: 84.

    PubMed  PubMed Central  Google Scholar 

  79. Bureau I, von Saint Paul F, Svoboda K. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 2006, 4: e382. https://doi.org/10.1371/journal.pbio.0040382.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Frick A, Feldmeyer D, Helmstaedter M, Sakmann B. Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 2008, 18: 397–406.

    PubMed  Google Scholar 

  81. Ide S, Kakeda S, Korogi Y. Anatomy of the thalamus. Brain Nerve 2015, 67: 1459–1469.

    CAS  PubMed  Google Scholar 

  82. Du TT, Chen YC, Shi L, Liu DF, Liu YY, Yuan TS, et al. Deep brain stimulation of the anterior nuclei of the thalamus relieves basal Ganglia dysfunction in monkeys with temporal lobe epilepsy. CNS Neurosci Ther 2021, 27: 341–351.

    CAS  PubMed  Google Scholar 

  83. Salanova V. Deep brain stimulation for epilepsy. Epilepsy Behav 2018, 88S: 21–24.

    PubMed  Google Scholar 

  84. Hwang K, Bertolero MA, Liu WB, D’Esposito M. The human thalamus is an integrative hub for functional brain networks. J Neurosci 2017, 37: 5594–5607.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lara-Vásquez A, Espinosa N, Durán E, Stockle M, Fuentealba P. Midline thalamic neurons are differentially engaged during Hippocampus network oscillations. Sci Rep 2016, 6: 29807.

    PubMed  PubMed Central  Google Scholar 

  86. McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001, 105: 681–693.

    CAS  PubMed  Google Scholar 

  87. Jo HJ, Kenney-Jung DL, Balzekas I, Welker KM, Jones DT, Croarkin PE, et al. Relationship between seizure frequency and functional abnormalities in limbic network of medial temporal lobe epilepsy. Front Neurol 2019, 10: 488.

    PubMed  PubMed Central  Google Scholar 

  88. Totola LT, Malheiros-Lima MR, Delfino-Pereira P, del Vecchio F, Souza FC, Takakura AC, et al. Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res 2019, 1718: 159–168.

    CAS  PubMed  Google Scholar 

  89. Sun HL, Zhu W, Zhang YR, Pan XH, Zhang JR, Chen XM, et al. Altered glutamate metabolism contributes to antiepileptogenic effects in the progression from focal seizure to generalized seizure by low-frequency stimulation in the ventral hippocampus. Epilepsy Behav 2017, 68: 1–7.

    PubMed  Google Scholar 

  90. Guirado S, Real MA, Dávila JC. Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse. Brain Res Bull 2008, 75: 214–217.

    CAS  PubMed  Google Scholar 

  91. Sorvari H, Soininen H, Pitkänen A. Calretinin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 1996, 369: 188–208.

    CAS  PubMed  Google Scholar 

  92. Legaz I, Olmos L, Real MA, Guirado S, Dávila JC, Medina L. Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse, with special emphasis on those of the basolateral amygdalar complex. J Comp Neurol 2005, 488: 492–513.

    CAS  PubMed  Google Scholar 

  93. Krzywkowski P, Jacobowitz DM, Lamour Y. Calretinin-containing pathways in the rat forebrain. Brain Res 1995, 705: 273–294.

    CAS  PubMed  Google Scholar 

  94. Mátyás F, Komlósi G, Babiczky Á, Kocsis K, Barthó P, Barsy B, et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018, 21: 1551–1562.

    PubMed  PubMed Central  Google Scholar 

  95. Sorvari H, Miettinen R, Soininen H, Paljärvi L, Karkola K, Pitkänen A. Calretinin-immunoreactive terminals make synapses on calbindin D28k-immunoreactive neurons in the lateral nucleus of the human amygdala. Brain Res 1998, 783: 355–358.

    CAS  PubMed  Google Scholar 

  96. Rambaldi AM, Cozzi B, Grandis A, Canova M, Mazzoni M, Bombardi C. Distribution of calretinin immunoreactivity in the lateral nucleus of the bottlenose dolphin (Tursiops truncatus) amygdala. Anat Rec (Hoboken) 2017, 300: 2008–2016.

    CAS  Google Scholar 

  97. Jászai J, Farkas LM, Gallatz K, Palkovits M. Effects of glutamate-induced excitotoxicity on calretinin-expressing neuron populations in the area postrema of the rat. Cell Tissue Res 1998, 293: 227–233.

    PubMed  Google Scholar 

  98. Meldrum BS. Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 1993, 3: 405–412.

    CAS  PubMed  Google Scholar 

  99. Zhang S, Khanna S, Tang FR. Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. J Neurosci Res 2009, 87: 1135–1149.

    CAS  PubMed  Google Scholar 

  100. Ma DL, Tang YC, Chen PM, Chia SC, Jiang FL, Burgunder JM, et al. Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway. J Neurosci Res 2006, 83: 318–331.

    CAS  PubMed  Google Scholar 

  101. Buckmaster PS, Abrams E, Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 2017, 525: 2592–2610.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Blümcke I, Beck H, Suter B, Hoffmann D, Födisch HJ, Wolf HK, et al. An increase of hippocampal calretinin-immunoreactive neurons correlates with early febrile seizures in temporal lobe epilepsy. Acta Neuropathol 1999, 97: 31–39.

    PubMed  Google Scholar 

  103. Botterill JJ, Nogovitsyn N, Caruncho HJ, Kalynchuk LE. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol 2017, 525: 389–406.

    CAS  PubMed  Google Scholar 

  104. Drexel M, Preidt AP, Kirchmair E, Sperk G. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures. Neuroscience 2011, 189: 316–329.

    CAS  PubMed  Google Scholar 

  105. Blumcke I, Beck H, Nitsch R, Eickhoff C, Scheffler B, Celio MR, et al. Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 1996, 55: 329–341.

    CAS  PubMed  Google Scholar 

  106. Maglóczky Z, Freund TF. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 2005, 28: 334–340.

    PubMed  Google Scholar 

  107. Tóth K, Maglóczky Z. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front Neuroanat 2014, 8: 100.

    PubMed  PubMed Central  Google Scholar 

  108. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 2002, 22: 5797–5802.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 2006, 26: 4701–4713.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, et al. Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 2009, 216: 390–397.

    PubMed  Google Scholar 

  111. Thom M, Sisodiya SM, Beckett A, Martinian L, Lin WR, Harkness W, et al. Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 2002, 61: 510–519.

    PubMed  Google Scholar 

  112. Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: Two decades of progress. Trends Neurosci 2000, 23: 580–587.

    CAS  PubMed  Google Scholar 

  113. Menteyne A, Levavasseur F, Audinat E, Avignone E. Predominant functional expression of Kv1.3 by activated microglia of the Hippocampus after Status epilepticus. PLoS One 2009, 4: e6770. https://doi.org/10.1371/journal.pone.0006770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 2013, 37: 2887–2899.

    PubMed  PubMed Central  Google Scholar 

  115. Domínguez MI, Blasco-Ibáñez JM, Crespo C, Marqués-Marí AI, Martínez-Guijarro FJ. Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res 2003, 966: 206–217.

    PubMed  Google Scholar 

  116. Liu JYW, Dzurova N, Al-Kaaby B, Mills K, Sisodiya SM, Thom M. Granule cell dispersion in human temporal lobe epilepsy: Proteomics investigation of neurodevelopmental migratory pathways. Front Cell Neurosci 2020, 14: 53.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Maglóczky Z, Freund TF. Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield. Neuroscience 1995, 66: 847–860.

    PubMed  Google Scholar 

  118. Magloczky Z, Freund TF. Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield. Neuroscience 1993, 56: 317–335.

    CAS  PubMed  Google Scholar 

  119. Duveau V, Madhusudan A, Caleo M, Knuesel I, Fritschy JM. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 2011, 21: 935–944.

    CAS  PubMed  Google Scholar 

  120. Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci U S A 1997, 94: 13311–13316.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hester MS, Danzer SC. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J Neurosci 2013, 33: 8926–8936.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Covolan L, Ribeiro LT, Longo BM, Mello LE. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus. Hippocampus 2000, 10: 169–180.

    CAS  PubMed  Google Scholar 

  123. Knopp A, Frahm C, Fidzinski P, Witte OW, Behr J. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Brain 2008, 131: 1516–1527.

    PubMed  Google Scholar 

  124. Sangdee P, Turkanis SA, Karler R. Kindling-like effect induced by repeated corneal electroshock in mice. Epilepsia 1982, 23: 471–479.

    CAS  PubMed  Google Scholar 

  125. Löscher W, Ebert U. The role of the piriform cortex in kindling. Prog Neurobiol 1996, 50: 427–481.

    PubMed  Google Scholar 

  126. Wang XT, Tang OF, Ye YL, Zheng MZ, Hu J, Chen Z, et al. Effects of crocin on hippocampus rapid kindling epilepsy in mice. J Zhejiang Univ Med Sci 2017, 46: 7–14.

    CAS  Google Scholar 

  127. Tang Y, Li L, Sun L, Yu J, Hu Z, Lian K, et al. In vivo two-photon calcium imaging in dendrites of rabies virus-labeled V1 corticothalamic neurons. Neurosci Bull 2020, 36: 545–553.

    CAS  PubMed  Google Scholar 

  128. Lukas W, Jones KA. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 1994, 61: 307–316.

    CAS  PubMed  Google Scholar 

  129. Huusko N, Römer C, Ndode-Ekane XE, Lukasiuk K, Pitkänen A. Loss of hippocampal interneurons and epileptogenesis: A comparison of two animal models of acquired epilepsy. Brain Struct Funct 2015, 220: 153–191.

    PubMed  Google Scholar 

  130. Duan ZN, Li A, Gong H, Li XN. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse caudal forelimb area. Neurosci Bull 2020, 36: 493–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Morello F, Partanen J. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Lett 2015, 589: 3693–3701.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the National Natural Science Foundation of China (81630098, 81973298, and 81821091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Cheng, H., Wang, Y. et al. Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci. Bull. 38, 209–222 (2022). https://doi.org/10.1007/s12264-021-00753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00753-1

Keywords

Navigation