Skip to main content
Log in

On the Hybrid Modeling of Phenomenological Damage Evolution in Low Carbon Steels During Equal Channel Angular Extrusion Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Low carbon steel is widely used in industry due to its excellent elastoplastic behavior with the mechanism of damage accumulation during severe plastic deformation processes which lead to increase strength resistance. In this study, the strain locus of the failure is predicted based on the stress triaxiality and Lode angle-dependent damage model by considering damage evolution during the process. Therefore, by performing various tests for several stress states and modeling the load paths related to damage accumulations, the coefficients of the modified Mohr–Coulomb damage model and Johnson–Cook are determined. According to results achieved among the test with good accuracy, the predictor locus of the failure strain is illustrated. Then, using the determined coefficients, the steel damage evolution is investigated during the process of Equal Channel Angular Extrusion (ECAE). It is shown that the damage accumulation during the ECAE process in a die with respectively internal and external angles of 90 and 30 degrees grows from the region closer to the internal angle as reaches a maximum value in central regions. Also, the amount of damage in vicinity of the outer angle is extremely reduced. According to experiments, the steel does resist fracture events after the ECAE process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.Z. Valiev, A.P. Zhilyaev, T. Langdon, Bulk Nanostructured Materials (Fundamental and Applications, TMS-Wiley, Hoboken (NJ), 2014).

    Google Scholar 

  2. V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995)

    Article  Google Scholar 

  3. G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 406, 268 (2005)

    Article  CAS  Google Scholar 

  4. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater. 39, 1221 (1998)

    Article  CAS  Google Scholar 

  5. J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Acta Mater. 49, 1497 (2001)

    Article  CAS  Google Scholar 

  6. A. Rosochowski, M. Rosochowska, L. Olejnik, J. Mater. Sci. 48, 4557 (2013)

    Article  CAS  Google Scholar 

  7. S. Sepahi-Boroujeni, F. Fereshteh-Saniee, J. Mater. Sci. 50, 3908 (2015)

    Article  CAS  Google Scholar 

  8. S.M. Alavizadeh, K. Abrinia, A. Parvizi, Met. Mater. Int. 26, 260 (2020)

    Article  Google Scholar 

  9. A.V. Nagasekhar, H.S. Kim, Met. Mater. Int. 14, 565 (2008)

    Article  Google Scholar 

  10. X. Che, Q. Wang, B. Dong, M. Meng, Z. Zhang, Met. Mater. Int. 26, 1786 (2020)

    Article  CAS  Google Scholar 

  11. M. Zhang, L. Liu, S. Liang, J. Li, Met. Mater. Int. 26, 1585 (2020)

    Article  CAS  Google Scholar 

  12. J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, W. Volk, Mater. Sci. Eng. A 650, 523 (2016)

    Article  CAS  Google Scholar 

  13. M. Chegini, A. Fallahi, M.H. Shaeri, Procedia Mater. Sci. 11, 95 (2015)

    Article  CAS  Google Scholar 

  14. W.J. Kim, Y.K. Sa, H.K. Kim, U.S. Yoon, Mater. Sci. Eng. A 487, 360 (2008)

    Article  CAS  Google Scholar 

  15. P. Cavaliere, Int. J. Fatigue 31, 1476 (2009)

    Article  CAS  Google Scholar 

  16. M. Ebrahimi, S. Attarilar, C. Gode, F. Djavanroodi, Int. J. Min. Met. Mater. 21, 990 (2014)

    Article  CAS  Google Scholar 

  17. M.S. Ghazani, A. Fardi-Ilkhchy, B. Binesh, Analysis of the plastic strain distribution and damage accumulation during T-shaped equal channel angular pressing, T. Indian I. Metals (2018). https://doi.org/10.1007/s12666-018-1387-8

  18. M.S. Ghazani, B. Eghbali, Comput. Mater. Sci. 74, 124 (2013)

    Article  CAS  Google Scholar 

  19. R. Comaneci, L. Zaharia, R. Chelariu, J. Mater. Eng. Perform. 21, 287 (2012)

    Article  CAS  Google Scholar 

  20. M.G. Cockcroft, D.J. Latham, A Simple Criterion of Fracture for Ductile Metals (National Engineering Laboratory, East Kilbride, 1966)

  21. R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Mater. Sci. Eng. A 518, 124 (2009)

    Article  CAS  Google Scholar 

  22. R. Luri, C.J.L. Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez, J.P. Fuertes, J. Mater. Process. Tech. 211, 48 (2011)

    Article  CAS  Google Scholar 

  23. Y. Bao, T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004)

    Article  Google Scholar 

  24. J.W. Hancock, A.C. Mackenzie, J. Mech. Phys. Solids 24, 147 (1976)

    Article  Google Scholar 

  25. F.A. McClintock, J. Appl. Mech. 35, 363 (1968)

    Article  Google Scholar 

  26. J.R. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969)

    Article  Google Scholar 

  27. Y. Bai, T. Wierzbicki, Int. J. Plasticity 24, 1071 (2008)

    Article  CAS  Google Scholar 

  28. I. Barsoum, J. Faleskog, Int. J. Solids Struct. 44, 1768 (2007)

    Article  CAS  Google Scholar 

  29. X. Gao, G. Zhang, C. Roe, Int. J. Damage Mech. 19, 75 (2010)

    Article  Google Scholar 

  30. G. Mirone, D. Corallo, Int. J. Plasticity 26, 348 (2010)

    Article  CAS  Google Scholar 

  31. L. Xue, Int. J. Solids Struct. 44, 5163 (2007)

    Article  CAS  Google Scholar 

  32. S.G. Rad, M. Alitavoli, A. Zajkani, A. Darvizeh, Int. J. Appl. Mech. 8, 1650050 (2016)

    Article  Google Scholar 

  33. S.G. Rad, A. Zajkani, Int. J. Impact Eng. 146, 103715 (2020)

    Article  Google Scholar 

  34. Y. Bai, T. Wierzbicki, Int. J. Fracture 161, 1 (2010)

    Article  CAS  Google Scholar 

  35. Z. Li, S. Lu, T. Zhang, T. Feng, Z. An, C. Xue, Measurement 154, 107505 (2020)

    Article  Google Scholar 

  36. X. Xiao, H. Pan, Y. Bai, Y. Lou, L. Chen, Int. J. Impact Eng. 123, 26 (2019)

    Article  Google Scholar 

  37. T. Kvačkaj, R. Kočiško, J. Tiža, J. Bidulská, A. Kováčová, R. Bidulský, J. Bascó, M. Vlado, Arch. Metall. Mater. 58, 407 (2013)

  38. G.R. Johnson, W.H. Cook, in Proceedings of the 7th International Symposium on Ballistics, The Hague, 19-21 April 1983 (American Defense Preparedness Association, Arlington, 1983), pp. 541–547

  39. N.S. Ottosen, M. Ristinmaa, The mechanics of Constitutive Modeling, (Elsevier, Amsterdam, 2005)

  40. Y. Seong, D. Yim, M.J. Jang, J.M. Park, S.J. Park, H.S. Kim, Met. Mater. Int. 26, 221 (2020)

    Article  CAS  Google Scholar 

  41. G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21, 31 (1985)

    Article  Google Scholar 

  42. S. Khare, K. Kumar, S. Choudhary, P.K. Singh, R.K. Verma, P. Mahajan, Determination of Johnson–cook material parameters for armour plate using DIC and FEM, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00895-3

  43. C.A. Coulomb, Mem. Math. Phys. Acad. Sci. Paris 7, 343 (1776)

    Google Scholar 

  44. T.-S. Cao, A. Gaillac, P. Montmitonnet, P.-O. Bouchard, Int. J. Solids Struct. 50, 3984 (2013)

    Article  CAS  Google Scholar 

  45. V. Palchik, Int. J. Rock Mech. Min. 43, 1153 (2006)

    Article  Google Scholar 

  46. M. Dunand, D. Mohr, J. Mech. Phys. Solids 59, 1374 (2011)

    Article  CAS  Google Scholar 

  47. M. Luo, M. Dunand, D. Mohr, Int. J. Plasticity 32, 36 (2012)

    Article  CAS  Google Scholar 

  48. L. Xue, Ductile fracture modeling: theory, experimental investigation and numerical verification, Ph.D. thesis, Massachusetts Institute of Technology (2007)

  49. S. Murakami, N. Ohno, in Creep in Structures, ed. by A.R.S. Ponter, D.R. Hayhurst (Springer, Berlin Heidelberg New York, 1981), pp. 422–444

  50. N. Bonora, Eng. Fract. Mech. 58, 11 (1997)

    Article  Google Scholar 

  51. Y. Bai, Y. Bao, T. Wierzbicki, Int. J. Impact Eng. 32, 671 (2006)

    Article  Google Scholar 

  52. H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952)

    Article  Google Scholar 

  53. P. Ludwik, Elemente der technologischen Mechanik (Springer, Berlin Heidelberg, 1909)

  54. M.A. Agwa, M.N. Ali, A.E. Al-Shorbagy, Mech. Mater. 100, 1 (2016)

    Article  Google Scholar 

  55. B.V. Patil, U. Chakkingal, T.P. Kumar, Influence of friction in equal channel angular pressing–A study with simulation, in Proceedings of the 17th International Conference of Metallurgy and Materials (Metal 2008), Hradec nad Moravicí, 13-15 May 2008

  56. S. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, M. Bourke, Acta Mater. 52, 4859 (2004)

    Article  CAS  Google Scholar 

  57. R. Kocich, A. Macháčková, V.A. Andreyachshenko, Comput. Mater. Sci. 101, 233 (2015)

    Article  CAS  Google Scholar 

  58. C.J.L. Pérez, Modell. Simul. Mater. Sc. 12, 205 (2004)

    Article  Google Scholar 

  59. I. Balasundar, M.S. Rao, T. Raghu, Mater. Design 30, 1050 (2009)

    Article  CAS  Google Scholar 

  60. I. Balasundar, T. Raghu, Mater. Design 31, 449 (2010)

    Article  Google Scholar 

  61. J. Tiža, T. Kvačkaj, M. Lupták, Acta Metall. Slovaca 15, 241 (2009)

    Google Scholar 

  62. A.V. Nagasekhar, S.C. Yoon, Y. Tick-Hon, H.S. Kim, Comput. Mater. Sci. 46, 347 (2009)

    Article  CAS  Google Scholar 

  63. M.H. Paydar, M. Reihanian, R. Ebrahimi, T.A. Dean, M.M. Moshksar, J. Mater. Process. Tech. 198, 48 (2008)

    Article  Google Scholar 

  64. B.S. Altan, G. Purcek, I. Miskioglu, J. Mater. Process. Tech. 168, 137 (2005)

    Article  Google Scholar 

  65. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46, 3317 (1998)

    Article  CAS  Google Scholar 

  66. R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Metall. Mater. Trans. A 41, 778 (2010)

    Article  CAS  Google Scholar 

  67. S.N. Alhajeri, N. Gao, T.G. Langdon, Mater. Sci. Forum 584-586, 446 (2008)

  68. M. Prell, C. Xu, T.G. Langdon, Mater. Sci. Eng. A 480, 449 (2008)

    Article  CAS  Google Scholar 

  69. C. Xu, T.G. Langdon, J. Mater. Sci. 42, 1542 (2007)

    Article  CAS  Google Scholar 

  70. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, T.C. Lowe (ed.), Ultrafine grained materials III, (TMS, Warrendale, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Rashidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadi, M., Rashidi, A.M. & Zajkani, A. On the Hybrid Modeling of Phenomenological Damage Evolution in Low Carbon Steels During Equal Channel Angular Extrusion Process. Met. Mater. Int. 28, 1075–1093 (2022). https://doi.org/10.1007/s12540-021-00993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00993-w

Keywords

Navigation