Skip to main content
Log in

Numerical simulation for a incompressible miscible displacement problem using a reduced-order finite element method based on POD technique

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents a reduced-order finite element (ROFE) method with seldom degrees of freedom for the incompressible miscible displacement problem, where the proper orthogonal decomposition (POD) technique is used. The algorithm process for the ROFE method is provided. Some numerical experiments are presented to help us understand this method and verify the accuracy and efficiency of this method. Meanwhile, numerical results reflect the robustness of the ROFE method in the face of anisotropic and heterogeneous oil reservoir problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Analyse numérique 17(1), 17–33 (1983)

    Article  Google Scholar 

  2. Chen, Z., Ewing, R.E.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30 (2), 431–453 (1999)

    Article  Google Scholar 

  3. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17(3), 351–365 (1980)

    Article  Google Scholar 

  4. Todd, M.R., O’Dell, P.M., Hirasaki, G.J.: Methods for increased accuracy in numerical reservoir simulators. Soc. Pet. Eng. J. 3516(6), 515–530 (1972)

    Article  Google Scholar 

  5. Peaceman, D.W.: Streamline Diffusion Methods for Problems in Fluid Mechanics. Finite Element in Fluids VI. Wiley, New York (1986)

    Google Scholar 

  6. Yang, D.: Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems. Math. Comput. 69(231), 926–963 (2000)

    Google Scholar 

  7. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)

    Article  Google Scholar 

  8. Chen, Y., Zeng, J., Zhou, J.: Lp error estimates of two-grid method for miscible displacement problem. J. Sci. Comput. 69(1), 28–51 (2016)

    Article  Google Scholar 

  9. Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468(1), 406–422 (2018)

    Article  Google Scholar 

  10. Hu, H., Fu, Y., Zhou, J.: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach. Numerical Algorithms 81(3), 879–914 (2019)

    Article  Google Scholar 

  11. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)

    Article  Google Scholar 

  12. Xu, J.: Iterative methods by SPD and small subspace solvers for nonsymmetric or indefinite problems. In: Proceedings of the Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp 106–118. SIAM, Philadelphia (1992)

  13. Dawson, C.N., Wheeler, M.F.: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition (University Park, PA, 1993). Commun. Contemp. Math. 180, 191–203 (1994)

    Article  Google Scholar 

  14. Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  Google Scholar 

  15. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  Google Scholar 

  16. Rozza, G., Veroy, K.: On the stability of reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

    Article  Google Scholar 

  17. Luo, Z., Chen, J., Navon, I.M., Yang, X.: Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations. SIAM J. Numer. Anal. 47(1), 1–19 (2009)

    Article  Google Scholar 

  18. Luo, Z., Li, H., Zhou, Y., Xie, Z.: A reduced finite element formulation based on POD method for two-dimensional solute transport problems. J. Math. Anal. Appl. 385(1), 371–383 (2012)

    Article  Google Scholar 

  19. Urban, K., Patera, A.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)

    Article  Google Scholar 

  20. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)

    Google Scholar 

  21. Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (2002)

    Google Scholar 

  22. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  23. Sirovich, L.: Turbulence and the dynamics of coherent structures: part I-III. Q. Appl. Math. 45 (3), 561–590 (1987)

    Article  Google Scholar 

  24. Joslin, R.D., Gunzburger, M.D., Nicolaides, R.A., Erlebacher, G., Hussaini, M.Y.: A self-contained automated methodology for optimal flow control validated for transition delay. American Institute of Aeronautics and Astronautics Journal 35(5), 816–824 (1997)

    Article  Google Scholar 

  25. Ly, H.V., Tran, H.T.: Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Q. Appl. Math. 60(4), 631–656 (2002)

    Article  Google Scholar 

  26. Liu, Q., Teng, F., Luo, Z.: A reduced-order extrapolation algorithm based on CNLSMFE formulation and POD technique for two-dimensional Sobolev equations. Applied Mathematics Journal of Chinese Universities 29(2), 171–182 (2014)

    Article  Google Scholar 

  27. Luo, Z.: A POD-Based Reduced-Order stabilized Crank-Nicolson MFE formulation for the non-stationary parabolized Navier-Stokes equations. Math. Model. Anal. 20(3), 346–368 (2015)

    Article  Google Scholar 

  28. Luo, Z., Teng, F.: An optimized SPDMFE extrapolation approach based on the POD technique for 2D viscoelastic wave equation. Boundary Value Problems 2017(6), 1–20 (2017)

    Google Scholar 

  29. Xia, H., Luo, Z.: A stabilized MFE reduced-order extrapolation model based on POD for the 2D unsteady conduction-convection problem. J. Inequal. Appl. 2017(124), 1–17 (2017)

    Google Scholar 

  30. Mokadam, R.G.: Thermodynamic analysis of the Darcy law. J. Appl. Mech. 28(2), 208–212 (1961)

    Article  Google Scholar 

  31. Douglas, Jr.J., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41(164), 441–459 (1983)

    Article  Google Scholar 

  32. Galindez-Ramirez, G., Contreras, F.R.L., Carvalho, D.K.E., Lyra, P.R.M.: Numerical simulation of two-phase flows in 2-D petroleum reservoirs using a very high-order CPR method coupled to the MPFA-D finite volume scheme. J. Pet. Sci. Eng. 192 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China Grant No. 11671233 and the Shandong Provincial Science and Technology Development Program, China Grant No. 2018GGX101036.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Rui, H. Numerical simulation for a incompressible miscible displacement problem using a reduced-order finite element method based on POD technique. Comput Geosci 25, 2093–2108 (2021). https://doi.org/10.1007/s10596-021-10078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10078-7

Keywords

Navigation