Skip to main content
Log in

Formulation of cartap hydrochloride crosslinked chitosan tripolyphosphate nanospheres and its characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Insecticides are extensively applied in crop production and sometimes at higher concentration than their recommended doses, which has become an environmental hazard. Sustainable agricultural practices highlight minimal application of insecticides at low concentration. Use of controlled release formulations (CRFs) of pesticides in which active compound is associated with inert materials has emerged as an appealing alternative. In this study, nanospheres of insecticide cartap hydrochloride were developed using chitosan (CS) in the presence of tripolyphosphate (TPP) as crosslinker with the help of ionic gelation method, for the delivery of cartap hydrochloride. The nanoformulations were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectra. The FESEM images revealed that the size of chitosan tripolyphosphate (CS-TPP) nanospheres (nps) was in range of 117.01–185.27 nm, whereas cartap hydrochloride entrapped chitosan tripolyphosphate (C-CS-TPP) nanospheres had a size of 163.50–276.74 nm. FTIR results confirmed loading of cartap hydrochloride into chitosan tripolyphosphate nanospheres. The nanospheres showed encapsulation efficiency of 86.1% and were stable for 30 days at ambient temperature. In vitro release kinetics of insecticide from nanospheres followed a non Fickian diffusion mechanism. These nanospheres can act as slow-release formulation for the delivery of insecticide to the target organisms over a period of time, which is effective as well as environmentally safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaudhary ATMA, Kennedy IR (2005) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227. https://doi.org/10.1007/s00374-003-0706-2

    Article  Google Scholar 

  2. Pankratz FB, Doebel C, Farenhorst A, Goldsborough LG (2003) Interactions between algae (Selenastrum capricornutum) and pesticides: implications for managing constructed wetlands for pesticides removal. J Environ Sci Health B 38:147. https://doi.org/10.1081/PFC-120018445

    Article  CAS  Google Scholar 

  3. Sun K, Weijie L, Lili L, Na W, Shunshan D (2013) Ecological risks assessment of organophosphorus pesticides on bloom of Microcystis wesenbergii. Int Biodeterior Biodegradation 77:98–105. https://doi.org/10.1016/j.ibiod.2012.11.010

    Article  CAS  Google Scholar 

  4. Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. ii. efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J App Pol Sci 86:608–614. https://doi.org/10.1002/app.10897

    Article  CAS  Google Scholar 

  5. Kumar M, Kumar SPR, Jeon BH, Thajuddin N (2014) Chlorpyrifos-induced changes in the antioxidants and fatty acid compositions of Chroococcus turgidus NTMS12. Lett Appl Microbiol 59(5):535–541. https://doi.org/10.1111/lam.12311

    Article  CAS  PubMed  Google Scholar 

  6. Wilkins RM (2004) Controlled release technology, agricultural. In: Seidel A. (ed.) Kirk Othmer Encyclopedia of chemical technology 5th Ed. New Jersey: John Wiley & Sons. https://doi.org/10.1002/0471238961.0107180907150518.a01

  7. Chen H, Ruckenstein E (2014) Micellar structures in nanoparticle-multiblock copolymer complexes. Langmuir 30(13):3723–3728. https://doi.org/10.1021/la500450b

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Ruckenstein E (2013) Formation and degradation of multicomponent multicore micelles: insights from dissipative particle dynamics simulations Langmuir 29(18):5428–5434. https://doi.org/10.1021/la400033s

  9. Chen H, Ruckenstein E (2012) Formation of complex colloidal particles: morphologies and mechanisms. Soft Matter 8(34):8911–8916. https://doi.org/10.1039/C2SM26035B

    Article  CAS  Google Scholar 

  10. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection Polymers 2:229–251. https://doi.org/10.3390/polym2030229

    Article  CAS  Google Scholar 

  11. Margulis GK, Magdassi S (2012) Nanotechnology: an advanced approach to the development of potent insecticides. In: Ishaaya I., Horowit Z.A.R. and Palli S.R. (eds.) Adv. Technolo. Manag. Insect Pests Dordrecht: Springer, 295–314. https://doi.org/10.1007/978-94-007-4497-4_15

  12. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575. https://doi.org/10.1016/s0142-9612(96)00167-6

    Article  CAS  PubMed  Google Scholar 

  13. Roberts GAF (1992) Preparation of chitin and chitosan. London Press, The Macmillan UK. https://doi.org/10.1007/978-1-349-11545-7_2

    Book  Google Scholar 

  14. Kaur R, Goyal D, Agnihotri S (2021) Chitosan/PVA silver nanocomposite for butachlor removal: fabrication, characterization, adsorption mechanism and isotherms Carbohyd Polym 117906 https://doi.org/10.1016/j.carbpol.2021.117906

  15. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188. https://doi.org/10.1007/s13204-012-0080-1

    Article  CAS  Google Scholar 

  16. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  17. Haque P, Mustafa A, Khan MA (2007) Effect of cross linking monomers on the physico-mechanical and degradation properties of photo grafted chitosan film. Carbohyd Polym 68:109–115. https://doi.org/10.1016/J.CARBPOL.2006.07.020

    Article  CAS  Google Scholar 

  18. Gupta KC, Kumar MR (2000) Drug release behavior of beads and microgranules of chitosan. Biomaterials 21(11):1115–1119. https://doi.org/10.1016/S0142-9612(99)00263-X

    Article  CAS  PubMed  Google Scholar 

  19. Kalyaniwala K, Abhilash KPP, Victor PJ (2016) Cartap hydrochloride poisoning. Journal of the Association of Physicians of India 64. PMID: 27762121

  20. Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces 59:24–34. https://doi.org/10.1016/j.colsurfb.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  21. Gan Q, Wang T, Cochrane C, McCarron P (2005) Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery, Colloids Surf B 44:65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001

  22. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700. https://doi.org/10.1016/j.carres.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Prabaharan M, Mano JF (2005) Hydroxypropyl chitosan bearing –cyclodextrin cavities: synthesis and slow release of its inclusion complex with a model hydrophobic drug. Macromol Biosci 5:965–973. https://doi.org/10.1002/mabi.200500087

    Article  CAS  PubMed  Google Scholar 

  24. Grillo R et al (2010) Characterization of atrazine-loaded biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32. https://doi.org/10.1007/s10924-009-0153-8

    Article  CAS  Google Scholar 

  25. Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50:874–875. https://doi.org/10.1002/jps.2600501018

    Article  CAS  PubMed  Google Scholar 

  26. Korsmeyer RW et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  27. Costa P, Lobo JMS (2001) Modeling and comparison of dissolutions profiles. Eur J Pharm Sci 13:123–133. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226. https://doi.org/10.1016/S0378-5173(02)00548-3

    Article  CAS  PubMed  Google Scholar 

  29. Vila A, Sánchez A, Janes K, Behrens I, Kissel T, Vila Jato JL, Alonso MJ (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57(1):123–131. https://doi.org/10.1016/j.ejpb.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  30. Yang HC, Hon MH (2009) The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J 92(1):87–91. https://doi.org/10.1016/j.microc.2009.02.001

    Article  CAS  Google Scholar 

  31. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Controll Release 73(2–3):255–267. https://doi.org/10.1016/S0168-3659(01)00294-2

    Article  CAS  Google Scholar 

  32. Cintia RM, Mariana G, Mônica P, Natalia B et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci Rep. https://doi.org/10.1038/srep19768

    Article  Google Scholar 

  33. Yang Y, Cheng J, Garamus VM, Li N, Zou A (2018) Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles J Agric Food Chem 66(5):1067–1074. https://doi.org/10.1021/acs.jafc.7b04147

  34. Grillo R et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J Haz Mat 278:163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  CAS  Google Scholar 

  35. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S (2017) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624. https://doi.org/10.1016/j.ijbiomac.2016.12.059

    Article  CAS  PubMed  Google Scholar 

  36. Pawlak A, Mucha M (2003) Thermo gravimetric and FTIR studies of chitosan blends, Thermochim. Acta 396:153–166. https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  37. Dong Y, Xu C, Wang J, Wu Y, Wang M, Ruan Y (2002) Influence of degree of deacetylation on critical concentration of chitosan/dichlorocatic acid liquid crystalline solution. J Appl Polym Sci 83(6):1204–1208. https://doi.org/10.1002/app.2286

    Article  CAS  Google Scholar 

  38. Jain A, Thakur K, Sharma G, Kush P, Jain UK (2016) Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles Carbohydr. Polym 137:65–74. https://doi.org/10.1016/j.carbpol.2015.10.012

    Article  CAS  Google Scholar 

  39. Hashad RA, Ishak RA, Fahmy S, Mansour S, Geneidi AS (2016) Methotrexate loading in chitosan nanoparticles at a novel pH: response surface modeling, optimization and characterization. Int J Biol Macromol 86:50–58. https://doi.org/10.1016/j.ijbiomac.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  40. Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41(3):305–312. https://doi.org/10.1016/j.seppur.2004.03.019

    Article  CAS  Google Scholar 

  41. Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  42. Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Water solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63(3):367–374. https://doi.org/10.1016/j.carbpol.2005.09.023

    Article  CAS  Google Scholar 

  43. Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym 81:243–251. https://doi.org/10.1016/j.carbpol.2010.02.026

    Article  CAS  Google Scholar 

  44. Wu Y, Yang W, Wang C, Hu J, Fu S (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295(1–2):235–245. https://doi.org/10.1016/j.ijpharm.2005.01.042

    Article  CAS  PubMed  Google Scholar 

  45. Jia-hui Y, Yu-min D, Hua Z (1999) Blend films of chitosan–gelatin. J Wuhan Univ 45:440–444. https://doi.org/10.1007/BF02832288

    Article  Google Scholar 

  46. Gomathi T, Sudha PN, Florence JAK, Venkatesan J, Anil S (2017) Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int J Biol Macromol 104:1820–1832. https://doi.org/10.1016/j.ijbiomac.2017.01.147

    Article  CAS  PubMed  Google Scholar 

  47. Lazaridou M, Christodoulou E, Nerantzaki M, Kostoglou M, Lambropoulou DA, Katsarou A, Bikiaris DN (2020) Formulation and in-vitro characterization of chitosan-nanoparticles loaded with the iron chelator deferoxamine mesylate (DFO). Pharmaceutics 12(3):238. https://doi.org/10.3390/pharmaceutics12030238

    Article  CAS  PubMed Central  Google Scholar 

  48. Rejinold NS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam)nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83:76–786. https://doi.org/10.1016/j.carbpol.2010.08.052

    Article  CAS  Google Scholar 

  49. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250:215Y226. https://doi.org/10.1016/s0378-5173(02)00548-3

  50. Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80:442–448. https://doi.org/10.1016/j.carbpol.2009.11.047

    Article  CAS  Google Scholar 

  51. Knaul JZ, Hudson SM, Creber KAM (1999) Improved mechanical properties of chitosan fibres. J Appl Polym Sci 72:1721Y1731. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13%3C1721:AID-APP8%3E3.0.CO;2-V

  52. Wang X, Ma J, Wang Y, He B (2001) Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 22:2247Y2255. https://doi.org/10.1016/s0142-9612(00)00413-0.

  53. Fajardo AR, Piai JF, Rubira AF, Muniz EC (2010) Time-and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohyd Polym 80(934–943):4. https://doi.org/10.1016/j.carbpol.2010.01.009

    Article  CAS  Google Scholar 

  54. Hao YM, Zhao FL, Li N, Yang YH, Li KA (2002) Studies on a high encapsulation of colchicine by a noisome system. Int J Pharm 244:73–80. https://doi.org/10.1016/s0378-5173(02)00301-0

    Article  CAS  PubMed  Google Scholar 

  55. Pendekal MS, Tegginamat PK (2013) Hybrid drug delivery system for oropharyngeal, cervical and colorectal cancer – in vitro and in vivo evaluation. Saudi Pharm J 21:177–186. https://doi.org/10.1016/j.jsps.2012.07.002

    Article  PubMed  Google Scholar 

  56. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohyd Polym 73:44–54. https://doi.org/10.1016/j.carbpol.2007.11.007

    Article  CAS  Google Scholar 

  57. Li P, Wang Y, Peng Z, She F, Kong L (2011) Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohyd Polym 85:698–704. https://doi.org/10.1016/j.carbpol.2011.03.045

    Article  CAS  Google Scholar 

  58. Subal CB (2006) Modelling of drug release: the Higuchi equation and its application. Pharmabiz.com

  59. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223 (PMID: 20524422)

    CAS  PubMed  Google Scholar 

  60. Singhvi G, Singh M (2011) In-vitro drug release characterization models. Int J Pharm Stud Res 2: 77–8. E-ISSN 2229–4619

  61. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  62. Silva MS et al (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Haz Mat 190:366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057

    Article  CAS  Google Scholar 

  63. Grillo R, Rosa AH, Fraceto LF (2014) Poly (ε -caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int J Environ Sci Technol 11:1691–1700. https://doi.org/10.1007/s13762-013-0358-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Head, Department of Biotechnology and Coordinator, Science and Technology Entrepreneurship Park (STEP), Thapar Institute of Engineering and Technology, Patiala, for infrastructure and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Goyal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Goyal, D. & Agnihotri, S. Formulation of cartap hydrochloride crosslinked chitosan tripolyphosphate nanospheres and its characterization. Colloid Polym Sci 299, 1407–1418 (2021). https://doi.org/10.1007/s00396-021-04866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04866-x

Keywords

Navigation