Skip to main content

Advertisement

Log in

Structural and probing dynamics of Brij-35-based microemulsion for fluoroquinolone antibiotics

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, an oil-in-water microemulsion (µE) formulation was developed using clove oil/Brij-35/isopropanol/water to solubilize fluoroquinolone (FLQ) antibiotics, namely, Ciprofloxacin (CF), Levofloxacin (LF), and Moxifloxacin (MF). Through the mapping of pseudo-ternary phase diagram, optimum µE containing clove oil (18%) and water (26%) were established, maintaining the Brij-35/isopropanol ratio (1:1) to upheld the appropriate amount of FLQ, i.e., CF (3.8 wt. %), LF (5.2 wt. %), and MF (4.2 wt. %). Through optical microscopy and electrical conductivity, the structural transformation of as-formulated µE was analyzed. The peak-to-peak correlation of the FTIR study shows that FLQ have good compatibility with µE excipients, while the DLS results show monomodal size distribution of microdroplets. Similarly, FLQ fluorescence detection perceives the interface environment of the colloidal domain. In addition, the agar well diffusion method was used to evaluate the antibacterial potential of the formulated FLQ-loaded µEs, indicating the enhanced antibacterial activity against all bacterial strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Negrini R, Mezzenga R (2011) pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 27(9):5296–5303

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 64(7):640–665

    Article  CAS  PubMed  Google Scholar 

  3. Formariz TP, Chiavacci LA, Sarmento VH, Franzini CM, Silva Jr AA, Scarpa MV, Santilli CV, Egito ES, Oliveira AG (2008) Structural changes of biocompatible neutral microemulsions stabilized by mixed surfactant containing soya phosphatidylcholine and their relationship with doxorubicin release. Colloids Surf B Biointerfaces 63(2):287–295

  4. Zahr AS, de Villiers M, Pishko MV (2005) Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 21(1):403–410

    Article  CAS  PubMed  Google Scholar 

  5. Tourné-Péteilh C, Coasne B, In M, Brevet D, Devoisselle J-M, Vioux A, Viau L (2014) Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir 30(5):1229–1238

    Article  PubMed  CAS  Google Scholar 

  6. Rahdar A, Hajinezhad MR, Nasri S, Beyzaei H, Barani M, Trant JF (2020) The synthesis of methotrexate-loaded F127 microemulsions and their in vivo toxicity in a rat model. J Mol Liq 313:113449

  7. Rahdar A, Sargazi S, Barani M, Shahraki S, Sabir F, Aboudzadeh MA (2021) Lignin-stabilized doxorubicin microemulsions: synthesis, physical characterization, and in vitro assessments. Polymers 13(4):641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasanein P, Rahdar A, Barani M, Baino F, Yari S (2021) Oil-in-water microemulsion encapsulation of antagonist drugs prevents renal ischemia-reperfusion injury in rats. Appl Sci 11(3):1264

    Article  CAS  Google Scholar 

  9. Rahdar A, Hajinezhad MR, Sargazi S, Bilal M, Barani M, Karimi P, Kyzas GZ (2021) Biochemical effects of deferasirox and deferasirox-loaded nanomicellesin iron-intoxicated rats. Life Sci 270:119146

  10. Rahdar A, Hajinezhad MR, Sargazi S, Barani M, Bilal M, Kyzas GZ (2021) Deferasirox-loaded pluronic nanomicelles: synthesis, characterization, in vitro and in vivo studies. J Mol Liq 323:114605

  11. Abbaspourrad A, Datta SS, Weitz DA (2013) Controlling release from pH-responsive microcapsules. Langmuir 29(41):12697–12702

    Article  CAS  PubMed  Google Scholar 

  12. Nazar MF, Azeem W, Rana UA, Ashfaq M, Lashin A, Al-Arifi N, Rahman HMAU, Lazim AM, Mahmood A (2016) pH-dependent probing of levofloxacin assimilated in surfactant mediated assemblies: Insights from photoluminescent and chromatographic measurements. J Mol Liq 220:26–32

    Article  CAS  Google Scholar 

  13. Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280

    Article  CAS  PubMed  Google Scholar 

  14. Gulati M, Grover M, Singh S, Singh M (1998) Lipophilic drug derivatives in liposomes. Int J Pharm 165(2):129–168

    Article  CAS  Google Scholar 

  15. Gregoriadis G (2016) Liposomes in drug delivery: how it all happened. Pharmaceutics 8(2):19

    Article  PubMed Central  CAS  Google Scholar 

  16. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147

    Article  CAS  PubMed  Google Scholar 

  17. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  18. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  PubMed  Google Scholar 

  19. Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H (2020) Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv Powder Technol 31:4768–4781

    Article  CAS  Google Scholar 

  20. Akbarzadeh I, Keramati M, Azadi A, Afzali E, Shahbazi R, Norouzian D, Bakhshandeh H (2021) Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids 234:105019

  21. Hedayati ChM, Abolhassani Targhi A, Shamsi F, Heidari F, Salehi Moghadam Z, Mirzaie A, Behdad R, Moghtaderi M, Akbarzadeh I (2021) Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res, Part A 109(6):966–980

    Article  CAS  Google Scholar 

  22. Mirzaie A, Peirovi N, Akbarzadeh I, Moghtaderi M, Heidari F, Yeganeh FE, Noorbazargan H, Mirzazadeh S, Bakhtiari R (2020) Preparation and optimization of ciprofloxacin encapsulated niosomes: a new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem 103:104231

  23. Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ (2013) Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces101:143–151

  24. Callender SP, Mathews JA, Kobernyk K, Wettig SD (2017) Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm 526:425–442

    Article  CAS  PubMed  Google Scholar 

  25. Rahman HMA, Afzal S, Nazar MF, Alvi DA, Khan AM, Asghar MN (2017) Phase behavior of a TX-100/oleic acid/water based ternary system: a microstructure study. J Mol Liq 230:15–19

    Article  CAS  Google Scholar 

  26. Nazar MF, Khan AM, Shah SS (2009) Microemulsion system with improved loading of piroxicam: a study of microstructure. AAPS PharmSciTech 10:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nazar MF, Siddique MY, Saleem MA, Zafar M, Nawaz F, Ashfaq M, Khan AM, Rahman HMA, Tahir MB, Lazim AM (2018) Fourth-generation antibiotic gatifloxacin encapsulated by microemulsions: structural and probing dynamics. Langmuir 34(36):10603–10612

    Article  CAS  PubMed  Google Scholar 

  28. Nazar MF, Mujeed A, Siddique MY, Zafar M, Saleem MA, Khan AM, Ashfaq M, Sumrra SH, Zubair M, Zafar MN (2020) Structural dynamics of tween-based microemulsions for antimuscarinic drug mirabegron. Colloid Polym Sci 298:263–271

    Article  CAS  Google Scholar 

  29. Saleem MA, Nazar MF, Siddique MY, Khan AM, Ashfaq M, Hussain SZ, Khalid MR, Yameen, B (2019) Soft-templated fabrication of antihypertensive nano-Irbesartan: structural and dissolution evaluation. J Mol Liq 292:111388

  30. Rahdar A, Almasi-Kashi M, Aliahmad M (2017) Effect of chain length of oil on location of dye within AOT nanometer-sized droplet microemulsions at constant water content. J Mol Liq 233:398–402

    Article  CAS  Google Scholar 

  31. Rahdar A, Almasi-Kashi M, Khan AM, Aliahmad M, Salimi A, Guettari M, Kohne HEG (2018) Effect of ion exchange in NaAOT surfactant on droplet size and location of dye within Rhodamine B (RhB)-containing microemulsion at low dye concentration. J Mol Liq 252:506–513

    Article  CAS  Google Scholar 

  32. Bardhan S, Kundu K, Saha SK, Paul BK (2013) Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil. J Colloid Interface Sci 402:180–189

    Article  CAS  PubMed  Google Scholar 

  33. Oliphant CM, Green GM (2002) Quinolones: a comprehensive review. Am Fam Physician 65(3):455–464

    PubMed  Google Scholar 

  34. Pham TDM, Ziora ZM, Blaskovich MAT (2019) Quinolone antibiotics. Medchemcomm 10(10):1719–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gillilan JA (2012) Improvement of U.S. EPA minimum risk essential oils’ pesticide activity through surfactant enhancement and synergy. Ohio State University

  36. Rai R, Pandey S (2014) Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant Brij-35. Langmuir 30(34):10156–10160

    Article  CAS  PubMed  Google Scholar 

  37. Kizilbash NA, Asif S, Nazar MF, Shah S, Alenizi D (2011) Design of a microemulsion-based drug delivery system for diclofenac sodium. J Chem Soc Pak 33(1):1–6

    CAS  Google Scholar 

  38. Saleem MA, Nazar MF, Yameen B, Khan AM, Hussain SZ, Khalid M (2018) Structural insights into the microemulsion-mediated formation of fluoroquinolone nanoantibiotics. ChemistrySelect 3:11616–11621

    Article  CAS  Google Scholar 

  39. Behdad R, Pargol M, Mirzaie A, Karizi SZ, Noorbazargan H, Akbarzadeh I (2020) Efflux pump inhibitory activity of biologically synthesized silver nanoparticles against multidrug-resistant Acinetobacter baumannii clinical isolates. J Basic Microbiol 60(6):494–507

    Article  CAS  PubMed  Google Scholar 

  40. Alkhatib MH, Aly MM, Saleh OA, Gashlan HM (2016) Antibacterial activity of a microemulsion loaded with cephalosporin. Biologia 71(7):748–756

    Article  CAS  Google Scholar 

  41. Chen YC, Chen BH (2018) Preparation of Curcuminoid microemulsions from curcuma longa l. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Adv 8:2323−2337

  42. Khan AM, Shah SS (2009) pH induced partitioning and interactions of ciprofloxacin hydrochloride with anionic surfactant sodium dodecyl sulfate using ultraviolet and fourier transformed infrared spectroscopy study. J Dispersion Sci Technol 30:1247–1254

    Article  CAS  Google Scholar 

  43. Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2017) Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against staphylococcus aureus. Artificial Cells, Nanomedicine, and Biotechnology 45(3):535–543

    Article  CAS  PubMed  Google Scholar 

  44. Seku K, Yamala AK, Kancherla M, Kumar KK, Badathala V (2018) Synthesis of moxifloxacin–Au (III) and Ag (I) metal complexes and their biological activities. J Anal Sci Technol 9(1):14

  45. Nazar MF, Saleem MA, Bajwa SN, Yameen B, Ashfaq M, Zafar MN, Zubair M (2017) Encapsulation of antibiotic levofloxacin in biocompatible microemulsion formulation: insights from microstructure analysis. J Phys Chem B 121(2):437–443

    Article  CAS  PubMed  Google Scholar 

  46. Al Omari MM, Jaafari DS, Al-Sou’od KA, Badwan AA (2014) Moxifloxacin hydrochloride. Profiles of drug substances, excipients, and related methodology 39:299–431

    Article  CAS  PubMed  Google Scholar 

  47. Saleem MA, Siddique MY, Nazar MF, Khan SU-D, Ahmad A, Khan R, Hussain SZ, Lazim AM, Azfaralariff A, Mohamed M (2020) Formation of antihyperlipidemic nano-ezetimibe from volatile microemulsion template for enhanced dissolution profile. Langmuir 36(27):7908–7915

    Article  CAS  PubMed  Google Scholar 

  48. Kalaitzaki A, Xenakis A, Papadimitriou V (2015) Highly water dilutable microemulsions: a structural study. Colloid Polym Sci 293(4):1111–1119

    Article  CAS  Google Scholar 

  49. Baptista MS, Tran CD (1997) Electrical conductivity, near-infrared absorption, and thermal lens spectroscopic studies of percolation of microemulsions. J Phys Chem B 101(21):4209–4217

    Article  CAS  Google Scholar 

  50. Sapra B, Thatai P, Bhandari S, Sood J, Jindal M, Tiwary AK (2014) A critical appraisal of microemulsions for drug delivery: part II. Ther Deliv 5:83–94

    Article  CAS  PubMed  Google Scholar 

  51. Rahman A, Rahman MM, Mollah MYA, Susan MABH (2016) Dynamic percolation and swollen behavior of nanodroplets in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate/triton X-100/cyclohexane microemulsions. J Phys Chem B 120(28):6995–7002

    Article  CAS  PubMed  Google Scholar 

  52. Dasilva-Carvalhal J, Garcia-Rio L, Gómez-Díaz D, Mejuto J, Rodríguez-Dafonte P (2003) Influence of crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions. Langmuir 19(15):5975–5983

    Article  CAS  Google Scholar 

  53. Zhang J, Lv Y, Zhao S, Wang B, Tan M, Xie H, Lv G, Ma X (2014) Effect of lipolysis on drug release from self-microemulsifying drug delivery systems (SMEDDS) with different core/shell drug location. AAPS PharmSciTech 15(3):731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaur G, Mehta SK (2014) Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach. J Pharm Sci 103(3):937–944

    Article  CAS  PubMed  Google Scholar 

  55. Guay DR (2006) Moxifloxacin in the treatment of skin and skin structure infections. Ther Clin Risk Manag 2(4):417–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alkhatib MH, Aly MM, Saleh OA, Gashlan HM (2016) Antibacterial activity of a microemulsion loaded with cephalosporin. Biologia 71:748–756

    Article  CAS  Google Scholar 

  57. Masadeh MM, Alzoubi KH, Ahmed WS, Magaji AS (2019) In vitro comparison of antibacterial and antibiofilm activities of selected fluoroquinolones against pseudomonas aeruginosa and methicillin-resistant staphylococcus aureus. Pathogens (Basel, Switzerland) 8(1):12

    CAS  Google Scholar 

  58. Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, Sultana Y (2016) Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Delivery 23(3):886–897

    Article  CAS  Google Scholar 

  59. Malik M, Zhao X, Drlica K (2006) Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol 61(3):810–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Chemistry, University of Gujrat Pakistan, for providing laboratory facilities.

Funding

M.F. Nazar received financial support from Higher Education Commission of Pakistan through NRPU Project. 20–4557/NRPU/R&D/HEC/14/481. The authors also received financial support from Deanship of Scientific Research at King Saud University through research group no. RG-1441–384.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Faizan Nazar or Ashfaq Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, M.Y., Alamgir, I., Nazar, M.F. et al. Structural and probing dynamics of Brij-35-based microemulsion for fluoroquinolone antibiotics. Colloid Polym Sci 299, 1479–1488 (2021). https://doi.org/10.1007/s00396-021-04871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04871-0

Keywords

Navigation