Skip to main content

Advertisement

Log in

The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Emergent studies reveal the roles of inflammatory cells and cytokines in the development of diabetic retinopathy (DR), which is gradually portrayed as a chronic inflammatory disease accompanied by metabolic disorder. Through the pathogenesis of DR, macrophages or microglia play a critical role in the inflammation, neovascularization, and neurodegeneration of the retina. Conventionally, macrophages are generally divided into M1 and M2 phenotypes which mainly rely on glycolysis and oxidative phosphorylation, respectively. Recently, studies have found that nutrients (including glucose and lipids) and metabolites (such as lactate), can not only provide energy for cells, but also act as signaling molecules to regulate the function and fate of cells. In this review, we discussed the intrinsic correlations among the metabolic status, polarization, and function of macrophage/microglia in DR. Hyperglycemia and hyperlipidemia could induce M1-like and M2-like macrophages polarization in different phases of DR. Targeting the regulation of microglial metabolic profile might be a promising therapeutic strategy to modulate the polarization and function of macrophages/microglia, thus attenuating the progression of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;12:e1221–34.

    Article  Google Scholar 

  2. Cheung N, Mitchell P, Wong TY. Diabetic Retinopathy. The Lancet. 2010;9735:124–36.

    Article  Google Scholar 

  3. Wong TY, Cheung CM, Larsen M, et al. Diabetic Retinopathy. Nat Rev Dis Primers. 2016;2:16012.

  4. Rubsam A, Parikh S, Fort PE. Role of inflammation in Diabetic Retinopathy. Int J Mol Sci. 2018;19:4.

  5. Altmann C, Schmidt MHH. The Role of Microglia in Diabetic Retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci. 2018;19:1.

  6. Ghosh-Choudhary S, Liu J, Finkel T. Metabolic regulation of cell fate and function. Trends Cell Biol. 2020;3:201–12.

    Article  CAS  Google Scholar 

  7. Shao Y, Chen J, Dong LJ, et al. A protective effect of PPARalpha in endothelial progenitor cells through regulating metabolism. Diabetes. 2019;11:2131–42.

    Article  CAS  Google Scholar 

  8. Shao Y, Chen J, Freeman W, et al. Canonical Wnt signaling promotes neovascularization through determination of endothelial progenitor cell fate via metabolic profile regulation. Stem Cells. 2019;10:1331–43.

    Article  CAS  Google Scholar 

  9. Haas R, Cucchi D, Smith J, et al. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci. 2016;5:460–71.

    Article  CAS  Google Scholar 

  10. Buck MD, Sowell RT, Kaech SM, et al. Metabolic Instruction of Immunity. Cell. 2017;4:570–86.

    Article  CAS  Google Scholar 

  11. Mosser DM, Edwards JP. Exploring the full spectrum of macrophages activation. Nat Rev Immunol. 2008;12:958–69.

    Article  CAS  Google Scholar 

  12. Nau GJ, Richmond JF, Schlesinger A, et al. Human macrophages activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A. 2002;3:1503–8.

    Article  CAS  Google Scholar 

  13. Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;11:7884–96.

    Article  CAS  Google Scholar 

  14. Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophages polarization through control of glucose metabolism. Cell Metab. 2012;6:813–26.

    Article  CAS  Google Scholar 

  15. Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophages polarization. Immunity. 2015;3:419–30.

    Article  CAS  Google Scholar 

  16. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophages activation: time for reassessment. F1000Prime Rep. 2014;6:13.

  17. Mantovani A, Biswas SK, Galdiero MR, et al. Macrophages plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;2:176–85.

    Article  CAS  Google Scholar 

  18. Doyle AG, Herbein G, Montaner LJ, et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol. 1994;6:1441–5.

    Article  Google Scholar 

  19. Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophages phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015;184:436–45.

  20. Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;9:846–55.

    Article  CAS  Google Scholar 

  21. Odegaard JI, Chawla A. Alternative macrophages activation and metabolism. Annu Rev Pathol. 2011;6:275–97.

  22. Rodriguez-Prados JC, Traves PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;1:605–14.

    Article  CAS  Google Scholar 

  23. O’neill LA. A broken krebs cycle in macrophages. Immunity. 2015;3:393–4.

    Article  CAS  Google Scholar 

  24. Eid S, Sas KM, Abcouwer SF, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;9:1539–49.

    Article  Google Scholar 

  25. Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic Retinopathy. Prim Care. 2015;3:451–64.

    Article  Google Scholar 

  26. Torres-Castro I, Arroyo-Camarena UD, Martinez-Reyes CP, et al. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:81–9.

  27. Pan Y, Wang Y, Cai L, et al. Inhibition of high glucose-induced inflammatory response and macrophages infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol. 2012;3:1169–82.

    Article  CAS  Google Scholar 

  28. Cheng CI, Chen PH, Lin YC, et al. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway. Cell Signal. 2015;2:283–92.

    Article  CAS  Google Scholar 

  29. Xu X, Qi X, Shao Y, et al. High glucose induced-macrophages activation through TGF-β-activated kinase 1 signaling pathway. Inflamm Res. 2016;8:655–64.

    Article  CAS  Google Scholar 

  30. Xu X, Fan Z, Qi X, et al. The role of TGF-β-activated kinase 1 in db/db mice and high glucose-induced macrophages. Int Immunopharmacol. 2016;38:120–31.

  31. Al-Rashed F, Sindhu S, Arefanian H, et al. Repetitive intermittent hyperglycemia drives the m1 polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 pathway. Cells. 2020;9:8.

  32. Grosick R, Alvarado-Vazquez PA, Messersmith AR, et al. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769–78.

  33. Pavlou S, Lindsay J, Ingram R, et al. Sustained high glucose exposure sensitizes macrophages responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol. 2018;1:24.

    Article  CAS  Google Scholar 

  34. Fadini GP, Simoni F, Cappellari R, et al. Pro-inflammatory monocyte-macrophages polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis. 2014;2:805–8.

    Article  CAS  Google Scholar 

  35. Bernelot Moens SJ, Neele AE, Kroon J, et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur Heart J. 2017;20:1584–93.

    Article  CAS  Google Scholar 

  36. Anderson EK, Hill AA, Hasty AH. Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arterioscler Thromb Vasc Biol. 2012;7:1687–95.

    Article  CAS  Google Scholar 

  37. Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol. 2017;5:519–29.

    Article  CAS  Google Scholar 

  38. Leng J, Chen MH, Zhou ZH, et al. Triterpenoids-enriched extract from the aerial parts of salvia miltiorrhiza regulates macrophages polarization and ameliorates insulin resistance in high-fat fed mice. Phytother Res. 2017;1:100–7.

    Article  CAS  Google Scholar 

  39. Xiong XQ, Geng Z, Zhou B, et al. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophages polarization in obesity Metabolism. 2018;83:31–41.

  40. Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;8:12160–78.

    Article  Google Scholar 

  41. Ka SO, Song MY, Bae EJ, et al. Myeloid SIRT1 regulates macrophages infiltration and insulin sensitivity in mice fed a high-fat diet. J Endocrinol. 2015;2:109–18.

    Google Scholar 

  42. Hui X, Zhang M, Gu P, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 2017;4:645–57.

    Article  CAS  Google Scholar 

  43. Flynn MC, Pernes G, Lee MKS, et al. Monocytes, macrophages, and metabolic disease in atherosclerosis. Front Pharmacol. 2019;10:666.

  44. Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;8:1731–8.

    Article  CAS  Google Scholar 

  45. Rios FJ, Koga MM, Ferracini M, et al. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS ONE. 2012;5:e336632.

    Google Scholar 

  46. Rios FJ, Koga MM, Pecenin M, et al. Oxidized LDL induces alternative macrophages phenotype through activation of CD36 and PAFR. Mediators Inflamm. 2013;2013:198193.

  47. Stoger JL, Gijbels MJ, Van Der Velden S, et al. Distribution of macrophages polarization markers in human atherosclerosis. Atherosclerosis. 2012;2:461–8.

    Article  CAS  Google Scholar 

  48. Cho KY, Miyoshi H, Kuroda S, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis. 2013;7:910–8.

    Article  Google Scholar 

  49. Peled M, Fisher EA. Dynamic aspects of macrophages polarization during atherosclerosis progression and regression. Front Immunol. 2014;5:579.

  50. Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest. 2017;8:2904–15.

    Article  Google Scholar 

  51. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of Diabetic Retinopsthy. Diabetes Care. 2012;3:556–64.

    Article  Google Scholar 

  52. Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of Diabetic Retinopathy. Prog Retin Eye Res. 2015;48:40–61.

  53. Stefansson E, Olafsdottir OB, Eliasdottir TS, et al. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog Retin Eye Res. 2019;70:1–22.

  54. Kusuhara S, Fukushima Y, Ogura S, et al. Pathophysiology of Diabetic Retinopathy: The Old and the New. Diabetes Metab J. 2018;5:364–76.

    Article  Google Scholar 

  55. Liew G, Lei Z, Tan G, et al. Metabolomics of Diabetic Retinopathy. Curr Diab Rep. 2017;11:102.

    Article  Google Scholar 

  56. Chen L, Cheng CY, Choi H, et al. Plasma metabonomic profiling of Diabetic Retinopathy. Diabetes. 2016;4:1099–108.

    Article  CAS  Google Scholar 

  57. Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in Diabetic Retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 2018;7:2421–7.

    Article  CAS  Google Scholar 

  58. Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999;4:261–73.

    Article  Google Scholar 

  59. Klip A, Marette A, Dimitrakoudis D, et al. Effect of diabetes on glucoregulation. From glucose transporters to glucose metabolism in vivo. Diabetes Care. 1992;11:1747–66.

    Article  Google Scholar 

  60. Badr GA, Tang J, Ismail-Beigi F, et al. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;6:1016–21.

    Article  Google Scholar 

  61. Fernandes R, Carvalho AL, Kumagai A, et al. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis. 2004;10:618–28.

  62. Kumagai AK, Vinores SA, Pardridge WM. Pathological upregulation of inner blood-retinal barrier Glut1 glucose transporter expression in diabetes mellitus. Brain Res. 1996;2:313–7.

    Article  Google Scholar 

  63. Lu L, Seidel CP, Iwase T, et al. Suppression of GLUT1; a new strategy to prevent diabetic complications. J Cell Physiol. 2013;2:251–7.

    Article  CAS  Google Scholar 

  64. You ZP, Zhang YL, Shi K, et al. Suppression of Diabetic Retinopathy with GLUT1 siRNA. Sci Rep. 2017;1:7437.

    Article  CAS  Google Scholar 

  65. Yokomizo H, Maeda Y, Park K, et al. Retinol binding protein 3 increased in the retina of patients with diabetes resistant to Diabetic Retinopathy. Sci Transl Med. 2019;11:499.

  66. Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial defects drive degenerative retinal diseases. Trends Mol Med. 2020;1:105–18.

    Article  Google Scholar 

  67. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;2:158–67.

    Article  CAS  Google Scholar 

  68. Kowluru RA, Kowluru A, Veluthakal R, et al. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of Diabetic Retinopathy. Diabetologia. 2014;5:1047–56.

    Article  CAS  Google Scholar 

  69. Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of Diabetic Retinopathy. J Clin Med. 2019;8:9.

  70. Kowluru RA. Mitochondrial stability in Diabetic Retinopathy: lessons learned from epigenetics. Diabetes. 2019;2:241–7.

    Article  CAS  Google Scholar 

  71. Malik AN, Rosa HS, De Menezes ES, et al. The detection and partial localisation of heteroplasmic mutations in the mitochondrial genome of patients with Diabetic Retinopathy. Int J Mol Sci. 2019;20:24.

  72. Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic modifications compromise mitochondrial DNA quality control in the development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2019;12:3943–51.

    Article  CAS  Google Scholar 

  73. Fumagalli S, Perego C, Pischiutta F, et al. The ischemic environment drives microglia and macrophages function. Front Neurol. 2015:6.

  74. Rajamani U, Jialal I. Hyperglycemia induces toll-like receptor-2 and -4 expression and activity in human microvascular retinal endothelial cells: implications for Diabetic Retinopathy. J Diabetes Res. 2014.

  75. Yao L, Kan EM, Lu J, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation. 2013;10:23.

  76. Butturini E, Boriero D, Carcereri De Prati A, et al. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys. 2019;669: 22–30.

  77. Tang J, Kern TS. Inflammation in Diabetic Retinopathy. Prog Retin Eye Res. 2011;5:343–58.

    Article  CAS  Google Scholar 

  78. Fadini GP, Cappellari R, Mazzucato M, et al. Monocyte–macrophages polarization balance in pre-diabetic individuals. Acta Diabetol. 2013;6:977–82.

    Article  CAS  Google Scholar 

  79. Fadini GP, De Kreutzenberg SV, Boscaro E, et al. An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia. 2013;8:1856–66.

    Article  CAS  Google Scholar 

  80. Arroba AI, Alcalde-Estevez E, Garcia-Ramirez M, et al. Modulation of microglia polarization dynamics during Diabetic Retinopathy in db/db mice. Biochim Biophys Acta. 2016;9:1663–74.

    Article  CAS  Google Scholar 

  81. Zeng H-Y, Green WR, Tso MOM. Microglial activation in human Diabetic Retinopathy. Arch Ophthalmol. 2008;2:227–32.

    Article  Google Scholar 

  82. Hsieh CF, Liu CK, Lee CT, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep. 2019;1:840.

    Article  CAS  Google Scholar 

  83. Chen C, Wu S, Hong Z, et al. Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY). 2019;2:697–706.

    Article  Google Scholar 

  84. Holland R, Mcintosh AL, Finucane OM, et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun. 2018;68183–196.

  85. Nair S, Sobotka KS, Joshi P, et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia. 2019;6:1047–61.

    Article  Google Scholar 

  86. Hu Y, Mai W, Chen L, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia. 2020;5:1031–45.

    Article  Google Scholar 

  87. Mei X, Zhang T, Ouyang H, et al. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of Diabetic Retinopathy. Biochem Pharmacol. 2019;159:82–95.

  88. Zhang T, Mei X, Ouyang H, et al. Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of Diabetic Retinopathy. J Nutr Biochem. 2019;65:1–14.

  89. Jo DH, Yun JH, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in Diabetic Retinopathy. Glia. 2019;2:321–31.

    Article  Google Scholar 

  90. Abu El-Asrar AM, Ahmad A, Allegaert E, et al. Interleukin-11 overexpression and M2 macrophages density are associated with angiogenic activity in proliferative Diabetic retinopathy. Ocul Immunol Inflamm. 2019;1–14. 

  91. Ding X, Gu R, Zhang M, et al. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol. 2018;1:249.

    Article  CAS  Google Scholar 

  92. Li L, Heiduschka P, Alex AF, et al. Behaviour of CD11b-positive cells in an animal model of laser-induced choroidal neovascularisation. Ophthalmologica. 2017;1:29–41.

    Article  CAS  Google Scholar 

  93. Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. 2020;12:555.

  94. Mendonca HR, Carpi-Santos R, Da Costa CK, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res. 2020;4:625–35.

    Google Scholar 

  95. Wang L, Pavlou S, Du X, et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 2019;1:2.

    Article  Google Scholar 

  96. Zhang T, Ouyang H, Mei X, et al. Erianin alleviates DR by reducing retinal inflammation initiated by microglia cells via inhibiting hyperglycemia-mediated ERK1/2-NF-kappaB signaling pathway. 2019;4:fj201802614RRR.

  97. Kong L, Wang Z, Liang X, et al. Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflamm. 2019;1:240.

    Article  CAS  Google Scholar 

  98. Dos-Santos-Pereira M, Guimaraes FS, Del-Bel E, et al. Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-kappaB-dependent signaling and glucose consumption. Glia. 2020;3:561–73.

    Article  Google Scholar 

  99. Li J, Yu S, Lu X, et al. The phase changes of M1/M2 phenotype of microglia/macrophages following oxygen-induced retinopathy in mice. Inflamm Res. 2021;2:183–92.

    Article  CAS  Google Scholar 

  100. Chen J, Shao Y, Sasore T, et al. Interphotoreceptor retinol-binding protein ameliorates diabetes-induced retinal dysfunction and neurodegeneration through rhodopsin. Diabetes. 2021;3:788–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81900891) and Global Ophthalmology Awards Program 2020 (482667) to Yan Shao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shao.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Wang, M., Li, X. et al. The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Human Cell 34, 1617–1628 (2021). https://doi.org/10.1007/s13577-021-00580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00580-6

Keywords

Navigation