Skip to main content

Advertisement

Log in

FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Long noncoding RNA (lncRNA) FOXC2-AS1 has been reported to act as an oncogene in multiple human cancers. However, the clinical significance, functional role and underlying mechanism of FOXC2-AS1 in gastric cancer (GC) remains largely unknown. Here, we found that FOXC2-AS1 expression was significantly elevated in GC tissues and cells, and overexpression of FOXC2-AS1 indicated advanced TNM stage and shorter overall survival in GC patients. Functionally, knockdown of FOXC2-AS1 attenuated the proliferation, migration and invasion of GC cells, whereas overexpression of FOXC2-AS1 showed the opposite effects. Further investigation revealed that FOXC2-AS1 interacted with FOXC2 mRNA and repressed its degradation. FOXC2-AS1 recruited RNA methyltransferase NSUN2 to FOXC2 mRNA, increasing its m5C level and association with YBX1. Taken together, our findings suggested that FOXC2-AS1 acted as an oncogenic lncRNA by stabilizing FOXC2 mRNA in an m5C-dependent manner, which may provide a novel therapeutic target for GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in this research are available.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: Cancer J Clini. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  Google Scholar 

  2. Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS : Acta Pathol Microbiol Immunol Scand. 2020;128(2):150–61. https://doi.org/10.1111/apm.13034.

    Article  Google Scholar 

  3. Lim JH, Shin CM, Han KD, Lee SW, Jin EH, Choi YJ, et al. Association between the persistence of obesity and the risk of gastric cancer: a nationwide population-based study. Cancer Res Treat Official J Korean Cancer Assoc. 2021. https://doi.org/10.4143/crt.2021.130.

    Article  Google Scholar 

  4. Oshi M, Satyananda V, Angarita FA, Kim TH, Tokumaru Y, Yan L, et al. Angiogenesis is associated with an attenuated tumor microenvironment, aggressive biology, and worse survival in gastric cancer patients. Am J Cancer Res. 2021;11(4):1659–71.

    PubMed  PubMed Central  Google Scholar 

  5. Grilli R, Violi F, Bassi MC, Marino M. The effects of centralizing cancer surgery on postoperative mortality: a systematic review and meta-analysis. J Health Services Res Policy. 2021. https://doi.org/10.1177/13558196211008942.

    Article  Google Scholar 

  6. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36(41):5661–7. https://doi.org/10.1038/onc.2017.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500(7464):598–602. https://doi.org/10.1038/nature12451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83. https://doi.org/10.1038/nrg.2016.20.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63. https://doi.org/10.1016/j.ccell.2016.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, Wang X, Zhang T, Su L, Liu B, Zhu Z, et al. LncRNA MALAT1 promotes gastric cancer progression via inhibiting autophagic flux and inducing fibroblast activation. Cell Death Dis. 2021;12(4):368. https://doi.org/10.1038/s41419-021-03645-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen H, Zhu H, Chen Y, Shen Z, Qiu W, Qian C, et al. ZEB1-induced LINC01559 expedites cell proliferation, migration and EMT process in gastric cancer through recruiting IGF2BP2 to stabilize ZEB1 expression. Cell Death Dis. 2021;12(4):349. https://doi.org/10.1038/s41419-021-03571-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang C, et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy. 2021. https://doi.org/10.1080/15548627.2021.1901204.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan T, Yu Z, Jin Z, Wu X, Wu A, Hou J, et al. Tumor suppressor lnc-CTSLP4 inhibits EMT and metastasis of gastric cancer by attenuating HNRNPAB-dependent Snail transcription. Mole Therapy Nucleic Acids. 2021;23:1288–303. https://doi.org/10.1016/j.omtn.2021.02.003.

    Article  CAS  Google Scholar 

  14. Zhang CL, Zhu KP, Ma XL. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 2017;396:66–75. https://doi.org/10.1016/j.canlet.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Chen T, Xu S, Zhang S, Zhang M. Long noncoding RNA FOXC2-AS1 predicts poor survival in breast cancer patients and promotes cell proliferation. Oncol Res. 2019;27(2):219–26. https://doi.org/10.3727/096504018X15213126075068.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Gu M, Liu C, Wan X, Shi Q, Chen Q, et al. Long noncoding RNA FOXC2-AS1 facilitates the proliferation and progression of prostate cancer via targeting miR-1253/EZH2. Gene. 2019;686:37–42. https://doi.org/10.1016/j.gene.2018.10.085.

    Article  CAS  PubMed  Google Scholar 

  17. Sun Z, He C, Xiao M, Wei B, Zhu Y, Zhang G, et al. LncRNA FOXC2 antisense transcript accelerates non-small-cell lung cancer tumorigenesis via silencing p15. Am J Trans Res. 2019;11(7):4552–60.

    CAS  Google Scholar 

  18. Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca(2+)-FAK signal pathway. Cell Death Dis. 2020;11(6):434. https://doi.org/10.1038/s41419-020-2633-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer. 2021;20(1):18. https://doi.org/10.1186/s12943-020-01263-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chellamuthu A, Gray SG. The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells. 2020. https://doi.org/10.3390/cells9081758.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA. 2014;5(1):95–110. https://doi.org/10.1002/wrna.1200.

    Article  CAS  PubMed  Google Scholar 

  22. Xu DF, Tao XH, Yu Y, Teng Y, Huang YM, Ma JW, et al. LncRNA FOXC2-AS1 stimulates proliferation of melanoma via silencing p15 by recruiting EZH2. Eur Rev Med Pharmacol Sci. 2020;24(17):8940–6. https://doi.org/10.26355/eurrev_202009_22835.

    Article  PubMed  Google Scholar 

  23. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176. https://doi.org/10.1186/s12943-019-1109-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270–88. https://doi.org/10.1016/j.ccell.2020.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591-606. e6. https://doi.org/10.1016/j.ccell.2017.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mei L, Shen C, Miao R, Wang JZ, Cao MD, Zhang YS, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57(Kip2) by an m(5)C-dependent manner. Cell Death Dis. 2020;11(4):270. https://doi.org/10.1038/s41419-020-2487-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Z, Xue S, Zhang M, Xu H, Hu X, Chen S, et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene. 2020;39(45):6906–19. https://doi.org/10.1038/s41388-020-01475-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21(8):978–90. https://doi.org/10.1038/s41556-019-0361-y.

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606–25. https://doi.org/10.1038/cr.2017.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu Y, Yamada S, Izumi H, Li Z, Shimajiri S, Wang KY, et al. Strong YB-1 expression is associated with liver metastasis progression and predicts shorter disease-free survival in advanced gastric cancer. J Surg Oncol. 2012;105(7):724–30. https://doi.org/10.1002/jso.23030.

    Article  CAS  PubMed  Google Scholar 

  31. Mo D, Fang H, Niu K, Liu J, Wu M, Li S, et al. Human helicase RECQL4 drives cisplatin resistance in gastric cancer by activating an AKT-YB1-MDR1 signaling pathway. Can Res. 2016;76(10):3057–66. https://doi.org/10.1158/0008-5472.CAN-15-2361.

    Article  CAS  Google Scholar 

  32. Huang S, Zhang X, Guan B, Sun P, Hong CT, Peng J, et al. A novel circular RNA hsa_circ_0008035 contributes to gastric cancer tumorigenesis through targeting the miR-375/YBX1 axis. Am J Trans Res. 2019;11(4):2455–62.

    CAS  Google Scholar 

  33. Xue X, Huang J, Yu K, Chen X, He Y, Qi D, et al. YB-1 transferred by gastric cancer exosomes promotes angiogenesis via enhancing the expression of angiogenic factors in vascular endothelial cells. BMC Cancer. 2020;20(1):996. https://doi.org/10.1186/s12885-020-07509-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the Natural Science Foundation of Hanchuan (No. 2018–10-13-54HC).

Author information

Authors and Affiliations

Authors

Contributions

All experiments were carried out by all authors. JL designed this research and wrote the manuscript. All authors approved the submission of this manuscript.

Corresponding author

Correspondence to Jianfa Lv.

Ethics declarations

Conflict of interests

None.

Ethics approval

This work was approved by the Ethics Committee of Hanchuan People’s Hospital in accordance with the Declaration of Helsinki (approval number: 2020-05-01-143GP).

Informed consent

Written informed consent was obtained from all patients.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Liu, J., Huang, Z. et al. FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells. Human Cell 34, 1755–1764 (2021). https://doi.org/10.1007/s13577-021-00583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00583-3

Keywords

Navigation