Skip to main content

Advertisement

Log in

Nanosized n-tetracosane as heat storage media: adjustable phase transition temperature and thermal property

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Normal alkane tetracosane (C24) as a representative compound containing alkyl chains was loaded into various porous materials to obtain form-stable phase change materials (PCMs). In the pores of controlled porous glasses (CPGs), silica gels (SGs), SBA-15 and KIT-6, C24 acquired tunable phase transition temperatures. By changing the pore sizes, C24 displayed regulated temperature windows of around 6 K (via melting) and 10 K (via solid phase transition) in the CPGs, 9 K in the SG pores (via melting) and about 13 K in SBA-15 (via melting). Phase transition temperatures, degree of supercooling and enthalpies of phase transitions exhibited linear dependence on the reverse pore diameter. The transition temperature and enthalpy change also had relevance to pore geometries. The phase sequences and solid structures of C24 in the pores changed largely. The study provides an insight into thermal properties of nano-sized PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this manuscript.

Abbreviations

H m :

Enthalpy of fusion, J g−1

H s :

Enthalpy of solid–solid phase transition, J g−1

T H :

Degree of supercooling, K

T trs :

Decrease of transition temperatures, K

T m :

Melting point, K

T m,d :

Melting point of crystals of size d, K

V m :

Molar volume, L mol–1

k :

Thermal conductivity, W m−1 K−1

σ sl :

Surface energy of solid–liquid interface, N m−1.

ρ s :

Solid phase density of bulk material, g cm−3.

PCMs:

Phase change materials

CPGs:

Controlled porous glasses

SGs:

Silica gels

s–s:

Solid–solid

s-l:

Solid–liquid

References

  1. Kant K, Shukla A, Sharma A (2017) Advancement in phase change materials for thermal energy storage applications. Sol Energy Mater Sol Cells 172:82–92

    Google Scholar 

  2. Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int J Heat Mass Transfer 127:838–856

    Google Scholar 

  3. Yang G, Yim YJ, Lee JW, Heo YJ, Park SJ (2019) Carbon-filled organic phase-change materials for thermal energy storage: a review. Molecules 24(11):2055–2072

    Google Scholar 

  4. Anghel EM, Georgiev A, Petrescu S, Popov R, Constantinescu M (2014) Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J Therm Anal Calorim 117(2):557–566

    Google Scholar 

  5. Wu B, Zhao Y, Liu Q, Zhou C, Zhang X, Lei J (2019) Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage. J Therm Anal Calorim 137(4):1225–1232

    Google Scholar 

  6. Pethurajan V, Sivan S, Konatt AJ, Reddy AS (2018) Facile approach to improve solar thermal energy storage efficiency using encapsulated sugar alcohol based phase change material. Sol Energy Mater Sol Cells 185:524–535

    Google Scholar 

  7. Wu X, Ding J, Kong Y, Sun Z, Shao G, Li B, Wu J, Zhong Y, Shen X, Cui S (2018) Synthesis of a novel three-dimensional Na2SO4@SiO2@Al2O3-SiO2 phase change material doped aerogel composite with high thermal resistance and latent heat. Ceram Int 44(17):21855–21865

    Google Scholar 

  8. Fu W, Zou T, Liang X, Wang S, Gao X, Zhang Z, Fang Y (2019) Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system. Appl Therm Eng 162. https://doi.org/10.1016/j.applthermaleng.2019.114253

  9. Mert MS, Mert HH, Sert M (2018) Microencapsulated oleic-capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim 136(4):1551–1561

    Google Scholar 

  10. Soodoo N, Raghunanan L, Bouzidi L, Narine S (2019) Phase behavior of monosulfones: Use of high polarity sulfonyl groups to improve the thermal properties of lipid-based materials for PCM applications. Sol Energy Mater Sol Cells 201. https://doi.org/10.1016/j.solmat.2019.110115

  11. Kahraman Döğüşcü D (2019) Synthesis and characterization of ditetradecyl succinate and dioctadecyl succinate as novel phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 200. https://doi.org/10.1016/j.solmat.2019.110006

  12. Xiao Q, Zhang M, Fan J, Li L, Xu T, Yuan W (2019) Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol Energy Mater Sol Cells 199:91–98

    Google Scholar 

  13. Wang Y, Yu K, Peng H, Ling X (2019) Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage. Energy 167:269–274

    Google Scholar 

  14. Galazutdinova Y, Vega M, Grágeda M, Cabeza LF, Ushak S (2018) Preparation and characterization of an inorganic magnesium chloride/nitrate/graphite composite for low temperature energy storage. Sol Energy Mater Sol Cells 175:60–70

    Google Scholar 

  15. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661

    Google Scholar 

  16. Seitz S, Ajiro H (2019) Self-assembling weak polyelectrolytes for the layer-by-layer encapsulation of paraffin-type phase change material icosane. Sol Energy Mater Sol Cells 190:57–64

    Google Scholar 

  17. Horpan MS, Şahan N, Paksoy H, Sivrikaya O, Günes M (2019) Direct impregnation and characterization of Colemanite/Ulexite-Mg(OH)2 paraffin based form-stable phase change composites. Sol Energy Mater Sol Cells 195:346–352

    Google Scholar 

  18. Sarı A, Bicer A, Alkan C, Özcan AN (2019) Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell. Sol Energy Mater Sol Cells 193:1–6

    Google Scholar 

  19. Chen YH, Jiang LM, Fang Y, Shu L, Zhang YX, Xie T, Li KY, Tan N, Zhu L, Cao Z, Zeng JL (2019) Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material. Sol Energy Mater Sol Cells 200. https://doi.org/10.1016/j.solmat.2019.109989

  20. Rao Z, Xu T, Liu C, Zheng Z, Liang L, Hong K (2018) Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization. Sol Energy Mater Sol Cells 188:6–17

    Google Scholar 

  21. Jiang Y, Liu M, Sun Y (2019) Review on the development of high temperature phase change material composites for solar thermal energy storage. Sol Energy Mater Sol Cells 203. https://doi.org/10.1016/j.solmat.2019.110164

  22. Wu H-y, Chen R-t, Shao Y-w, Qi X-d, Yang J-h, Wang Y (2019) Novel Flexible Phase Change Materials with Mussel-Inspired Modification of Melamine Foam for Simultaneous Light-Actuated Shape Memory and Light-to-Thermal Energy Storage Capability. ACS Sustainable Chemistry & Engineering 7(15):13532–13542

    Google Scholar 

  23. Gao C-F, Wang L-P, Li Q-F, Wang C, Nan Z-D, Lan X-Z (2014) Tuning thermal properties of latent heat storage material through confinement in porous media: The case of (1-CnH2n+1NH3)2ZnCl4 (n=10 and 12). Sol Energy Mater Sol Cells 128:221–230

    Google Scholar 

  24. Wang C, Li Q, Wang L, Lan XZ (2016) Phase transition of neopentyl glycol in nanopores for thermal energy storage. Thermochim Acta 632:10–17

    Google Scholar 

  25. Tian F, Zhang S, Zhai M, Sui J, Lan X, Gao J (2017) Thermal properties of nano-sized polyethylene glycol confined in silica gels for latent heat storage. Thermochim Acta 655:211–218

    Google Scholar 

  26. Zhang X, Shen J, Pan S, Qian J, Pan B (2020) Metastable Zirconium Phosphate under Nanoconfinement with Superior Adsorption Capability for Water Treatment. Adv Funct Mater 30 (12). https://doi.org/10.1002/adfm.201909014

  27. Surrey A, Bonatto Minella C, Fechler N, Antonietti M, Grafe H-J, Schultz L, Rellinghaus B (2016) Improved hydrogen storage properties of LiBH4 via nanoconfinement in micro- and mesoporous aerogel-like carbon. Int J Hydrogen Energy 41(12):5540–5548

    Google Scholar 

  28. Milinskiy AY, Baryshnikov SV, Charnaya EV, Egorova IV, Uskova NI (2020) Effect of Nanoconfinement on the Kinetics of Phase Transitions in Organic Ferroelectric DIPAI. Phys Solid State 62(7):1199–1203

    Google Scholar 

  29. Haruk AM, Leng CZ, Fernando PS, Smilgies D-M, Loo Y-L, Mativetsky JM (2020) Tuning Organic Semiconductor Alignment and Aggregation via Nanoconfinement. The Journal of Physical Chemistry C 124(41):22799–22807

    Google Scholar 

  30. Shadpour S, Nemati A, Liu J, Hegmann T (2020) Directing the Handedness of Helical Nanofilaments Confined in Nanochannels Using Axially Chiral Binaphthyl Dopants. ACS Appl Mater Interfaces 12(11):13456–13463

    Google Scholar 

  31. Wu K, Chen Z, Li J, Lei Z, Xu J, Wang K, Li R, Dong X, Peng Y, Yang S, Zhang F, Chen Z, Gao Y (2019) Nanoconfinement Effect on n-Alkane Flow. The Journal of Physical Chemistry C 123(26):16456–16461

    Google Scholar 

  32. Pallaka MR, Unruh DK, Simon SL (2018) Melting behavior of n-alkanes in anodic aluminum oxide (AAO) nanopores using Flash differential scanning calorimetry. Thermochim Acta 663:157–164

    Google Scholar 

  33. Safari M, Leon Boigues L, Shi G, Maiz J, Liu G, Wang D, Mijangos C, Müller AJ (2020) Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 53(15):6486–6497

    Google Scholar 

  34. Berube F, Khadraoui A, Florek J, Kaliaguine S, Kleitz F (2015) A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. J Colloid Interface Sci 449:102–114

    Google Scholar 

  35. Zhang C, Sha Y, Zhang Y, Cai T, Li L, Zhou D, Wang X, Xue G (2017) Nanostructures and Dynamics of Isochorically Confined Amorphous Drug Mediated by Cooling Rate, Interfacial, and Intermolecular Interactions. J Phys Chem B 121(47):10704–10716

    Google Scholar 

  36. Peksa P, Trzmiel J, Ptak M, Kostrzewa M, Szatanik R, Barascu A, Enke D, Sieradzki A (2018) Confinement-induced polymorphism in acetylsalicylic acid-nanoporous glass composites. J Mater Sci 54(1):404–413

    Google Scholar 

  37. Cheng S, McKenna GB (2019) Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine. Mol Pharm 16(2):856–866

    Google Scholar 

  38. Diao Y, Lenn KM, Lee WY, Blood-Forsythe MA, Xu J, Mao Y, Kim Y, Reinspach JA, Park S, Aspuru-Guzik A, Xue G, Clancy P, Bao Z, Mannsfeld SC (2014) Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J Am Chem Soc 136(49):17046–17057

    Google Scholar 

  39. Sui J, Zhang SQ, Zhai M, Tian F, Zhang J, Lan XZ (2017) Polymorphism of a hexadecane–heptadecane binary system in nanopores. RSC Adv 7(18):10737–10747

    Google Scholar 

  40. Cao L, Man T, Kruk M (2009) Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander. Chem Mater 21(6):1144–1153

    Google Scholar 

  41. Nishihara H, Fukura Y, Inde K, Tsuji K, Takeuchi M, Kyotani T (2008) Carbon-coated mesoporous silica with hydrophobicity and electrical conductivity. Carbon 46(1):48–53

    Google Scholar 

  42. Deng S, Wang D, Wang X, Wei Y, Waterhouse GIN, Lan XZ (2018) Effect of nanopore confinement on the thermal and structural properties of heneicosan. Thermochim Acta 664:57–63

    Google Scholar 

  43. Wang D, Sui J, Qi D, Deng S, Wei Y, Wang X, Lan X (2018) Phase transition of docosane in nanopores. J Therm Anal Calorim 135(5):2869–2877

    Google Scholar 

  44. Zhai M, Zhang S, Sui J, Tian F, Lan XZ (2017) Solid–solid phase transition of tris(hydroxymethyl)aminomethane in nanopores of silica gel and porous glass for thermal energy storage. J Therm Anal Calorim 129(2):957–964

    Google Scholar 

  45. Mondieig D, Rajabalee F, Metivaud V, Oonk HAJ, Cuevas-Diarte MA (2004) n-Alkane Binary Molecular Alloys. Chem Mater 16(5):786–798

    Google Scholar 

  46. Wang X, Wei Y, Zhang D, Lan X, Han F, Lan XZ (2020) Phase behaviors of n-octacosane in nanopores: Role of pore size and morphology. Thermochim Acta 690:178687. https://doi.org/10.1016/j.tca.2020.178687

    Article  Google Scholar 

  47. Yan X, Wang TB, Gao CF, Lan XZ (2013) Mesoscopic Phase Behavior of tridecane–tetradecane mixtures confined in Porous Materials: Effects of Pore Size and Pore Geometry. The Journal of Physical Chemistry C 117(33):17245–17255

    Google Scholar 

  48. Wang LP, Li QF, Wang C, Lan XZ (2014) Size-Dependent phase behavior of the hexadecane–octadecane system confined in nanoporous glass. The Journal of Physical Chemistry C 118(31):18177–18186

    Google Scholar 

  49. Zhang W, Xue Y, Fu Q, Cui Z, Wang S (2017) Size dependence of phase transition thermodynamics of nanoparticles: A theoretical and experimental study. Powder Technol 308:258–265

    Google Scholar 

  50. Sun J, Simon SL (2007) The melting behavior of aluminum nanoparticles. Thermochim Acta 463(1–2):32–40

    Google Scholar 

  51. Zhdanov VP, Schwind M, Zorić I, Kasemo B (2010) Overheating and undercooling during melting and crystallization of metal nanoparticles. Phys E 42(7):1990–1994

    Google Scholar 

  52. Malik M, Dincer I, Rosen MA (2016) Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res 40(8):1011–1031

    Google Scholar 

  53. Zhang L, Zhou K, Wei Q, Ma L, Ye W, Li H, Zhou B, Yu Z, Lin CT, Luo J, Gan X (2019) Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy 233–234:208–219

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Natural Science Found of China (No. 21973056, 21727805, 21273138) and Natural Science Found of Shandong Province ZR2019MB050.

Funding

This study was funded by National Natural Science Found of China (No. 21973056, 21727805, 21273138) and Natural Science Found of Shandong Province ZR2019MB050.

Author information

Authors and Affiliations

Authors

Contributions

Dongxue Zhang: Conceptualization, Methodology, Formal analysis and investigation, Writing-original draft preparation. Xin Wang: Formal analysis and investigation. Yantao Dong: Formal analysis and investigation Nan Lu: Writing-review and editing Xiaozheng Lan: Writing-review and editing, Funding acquisition, Resources, Supervision.

Corresponding author

Correspondence to Xiaozheng Lan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, X., Dong, Y. et al. Nanosized n-tetracosane as heat storage media: adjustable phase transition temperature and thermal property. Heat Mass Transfer 58, 407–417 (2022). https://doi.org/10.1007/s00231-021-03112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03112-y

Navigation