Skip to main content
Log in

Self-Induced Transparency Solitons and Dissipative Solitons in Microwave Electronic Systems

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Solitons are a well-studied subject in many domains of nonlinear physics, including hydrodynamics, plasma physics, optics, etc. However, it has been demonstrated only recently that they can be realized in systems of microwave electronics. This review presents the results of analyzing theoretically the formation mechanisms of envelope solitons of two types. The first type is the self-induced transparency soliton, which is formed in the process of cyclotron-resonance interaction of electromagnetic pulses with initially rectilinear electron beams moving in a homogeneous magnetic field, and the relativistic dependence of the gyrofrequency on the particle energy is of fundamental importance for its formation. The second type is the soliton formed when saturable absorbers are installed in the feedback loops of electronic generators. Under such conditions, passive locking of resonator modes occurs, and the generated radiation is a periodic sequence of short pulses, which, on by analogy with laser systems, should be categorized as the class of dissipative solitons. Along with its general theoretical importance, the study of microwave solitons is of significant practical interest. In particular, experimental realization of generation of dissipative solitons in the microwave band will make it possible to create a new type of sources of ultrashort electromagnetic pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L.McCall and E. L. Hahn, Phys. Rev. Lett., 18, No. 21, 908–911 (1968). https://doi.org/10.1103/PhysRevLett.18.908

    Article  ADS  Google Scholar 

  2. S. L.McCall and E. L. Hahn, Phys. Rev., 183, 457–485 (1969). https://doi.org/10.1103/PhysRev.183.457

    Article  ADS  Google Scholar 

  3. G. L. Lamb, Rev. Mod. Phys., 43, 99–124 (1971). https://doi.org/10.1103/RevModPhys.43.99

    Article  ADS  Google Scholar 

  4. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Dover Publ. (1978).

    Google Scholar 

  5. I. A. Poluektov, Yu.M.Popov, and V. S. Roitberg, Sov. Phys. Usp., 18, 673–690 (1975). https://doi.org/10.1070/PU1975v017n05ABEH004365

    Article  ADS  Google Scholar 

  6. H. M. Gibbs and R.E. Slasher, Appl. Phys. Lett., 18, No. 11, 505–506 (1971). https://doi.org/10.1063/1.1653514

    Article  ADS  Google Scholar 

  7. N.N. Rozanov and S.V. Fedorov, Opt. Spectrosc., 72, No. 6, 1394–1399 (1992).

    Google Scholar 

  8. E.V.Vanin, A. I. Korytin, A.M. Sergeev, et al. Phys. Rev. A, 49, 2806 (1994). https://doi.org/10.1103/PhysRevA.49.2806

    Article  ADS  Google Scholar 

  9. N. N. Rozanov, Phys. Usp., 43, 421–424 (2000). https://doi.org/10.1070/PU2000v043n04ABEH000721

    Article  ADS  Google Scholar 

  10. N. N. Rozanov, Dissipative Optical Solitons: From Micro to Nano and Atto [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  11. S.K.Turitsyn, N.N.Rozanov, I.A.Yarutkina, et al., Phys. Usp., 59, 642–668 (2016). https://doi.org/10.3367/UFNe.2015.12.037674

    Article  ADS  Google Scholar 

  12. J. Hermann and B. Wilhelmi, Lasers for Ultrashort Light Pulses, Elsevier Science Ltd. (1987).

    Google Scholar 

  13. H. A. Haus, IEEE J. Select. Topics in Quant. Electron., 6, No. 6, 1173–1185 (2000). https://doi.org/10.1109/2944.902165

    Article  ADS  Google Scholar 

  14. T. Brabec and F. Krausz, Rev. Mod. Phys., 72, No. 2, 545–591 (2000). https://doi.org/10.1103/RevModPhys.72.545

    Article  ADS  Google Scholar 

  15. P. G. Kryukov, Quantum Electron., 31, No. 2, 95–119 (2001). https://doi.org/10.1070/QE2001v031n02ABEH001906

    Article  ADS  Google Scholar 

  16. M. V. Arkhipov, A.A. Shimko, N. N. Rosanov, et al., Phys. Rev. A, 101, No. 1, 013803 (2020). https://doi.org/10.1103/PhysRevA.101.013803

    Article  ADS  Google Scholar 

  17. B. S. Kerner and G.V.Osipov, Sov. Phys. Usp., 32, 101–138 (1989). https://doi.org/10.1070/PU1989v032n02ABEH002679

    Article  ADS  Google Scholar 

  18. C. Danson, C. Haefner, J. Bromage, et al., High Power Laser Science and Engineering, 7, E54 (2019). https://doi.org/10.1017/hpl.2019.36

    Article  Google Scholar 

  19. N. S. Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Rev. Lett., 105, No. 26, 265001 (2010). https://doi.org/10.1103/PhysRevLett.105.265001

    Article  ADS  Google Scholar 

  20. N. S. Ginzburg, I.V. Zotova, and A. S. Sergeev, J. Exp. Theor. Phys., 113, 772–780 (2011). https://doi.org/10.1134/S1063776111140147

    Article  ADS  Google Scholar 

  21. N. S. Ginzburg, I.V. Zotova, A. S. Sergeev, et al., Radiophys. Quantum Electron., 54, 532–547 (2012). https://doi.org/10.1007/s11141-012-9312-1

    Article  ADS  Google Scholar 

  22. I. V. Zotova, N. S. Ginzburg, A. S. Sergeev, et al., Phys. Rev. Lett., 113, 143901 (2014). https://doi.org/10.1103/PhysRevLett.113.143901

    Article  ADS  Google Scholar 

  23. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., Tech. Phys. Lett., 41, 836–839 (2015). https://doi.org/10.1134/S1063785015090047

    Article  ADS  Google Scholar 

  24. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., Phys. Plasmas, 23, No. 5, 050702 (2016). https://doi.org/10.1063/1.4948553

    Article  ADS  Google Scholar 

  25. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., Phys. Plasmas, 24, No. 2, 023103 (2017). https://doi.org/10.1063/1.4975084

    Article  ADS  Google Scholar 

  26. N. S. Ginzburg, E.B. Abubakirov, M. N. Vilkov, et al., Tech. Phys., 63, 1205–1211 (2018). https://doi.org/10.1134/S1063784218080078

    Article  Google Scholar 

  27. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., Phys. Rev. Appl., 13, 044033 (2020). https://doi.org/10.1103/PhysRevApplied.13.044033

    Article  ADS  Google Scholar 

  28. N. S. Ginzburg, E. R. Kocharovskaya, M. N. Vilkov, and A. S. Sergeev, J. Exp. Theor. Phys., 124, No. 1, 41–48 (2017). https://doi.org/10.1134/S1063776116150085

    Article  ADS  Google Scholar 

  29. N. S. Ginzburg, E. R. Kocharovskaya, M. N. Vilkov, et al., Phys. Plasmas, 25, No. 9, 093111 (2018). https://doi.org/10.1063/1.5046651

    Article  ADS  Google Scholar 

  30. S.V.Grishin, B. S. Dmitriev, V.N. Skorokhodov, and Yu.P. Sharaevskii, Tech. Phys. Lett., 41, 820–823 (2015). https://doi.org/10.1134/S1063785015090059

    Article  ADS  Google Scholar 

  31. S. V. Grishin, B. S. Dmitriev, V.N. Skorokhodov, et al., Élektron. Mikroélektron. SVCh., 1, 218–222 (2017).

    Google Scholar 

  32. A. V. Gaponov, M. I. Petelin, and V.K.Yulpatov, Radiophys. Quantum Electron., 10, 794–813 (1967). https://doi.org/10.1007/BF01031607

    Article  ADS  Google Scholar 

  33. N. S. Nusinovich, Introduction to the Physics of Gyrotrons. Johns Hopkins Univ. Press ,Baltimore (2004).

    Google Scholar 

  34. A. A. Kolomensky and A.N. Lebedev, Sov. Phys. JETP, 17, No. 1, 179–184 (1963).

    Google Scholar 

  35. W. H. Louisell, Coupled Mode and Parametric Electronics, John Wiley & Sons, New York, London (1960).

    Google Scholar 

  36. N. F. Kovalev, N. G. Kolganov, A.V.Palitsin, and M. I. Fuchs, in: Proc. 4th Int. Workshop Strong Microwaves: Sources and Applications Vol. 2. Nizhny Novgorod: IAP RAS, 2000, pp. 845–850.

  37. I. R. Gabitov, R. A. Indik, N. M. Litchinitser, and A. M. Maimistov, J. Opt. Soc. Am. B, 23, No. 3, 535–542 (2006). https://doi.org/10.1364/JOSAB.23.000535

    Article  ADS  Google Scholar 

  38. S. D. Korovin, A. A. Eltchaninov, V. V. Rostov, et al., Phys. Rev. E, 74, 016501 (2006). https://doi.org/10.1103/PhysRevE.74.016501

    Article  ADS  Google Scholar 

  39. V.VRostov, I.V. Romanchenko, M. S. Pedos, et al., Phys. Plasmas, 23, 093103 (2016). https://doi.org/10.1063/1.4962189

    Article  ADS  Google Scholar 

  40. N. D. Devyatkov, A.N.Didenko, L. Ya. Zamyatin, et al., Radiotekhn. Élektron., 25, No. 6, 1227–1232 (1980).

  41. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Tech. Phys. Lett., 24, 791-792 (1998). https://doi.org/10.1134/1.1262270

    Article  ADS  Google Scholar 

  42. S. V. Samsonov, A.D.R. Phelps, V. L. Bratman, et al., Phys. Rev. Lett., 92, No. 11, 118301 (2004). https://doi.org/10.1103/PhysRevLett.92.118301

    Article  ADS  Google Scholar 

  43. N. S. Ginzburg, S.P.Kuznetsov, and T.N. Fedoseeva, Radiophys. Quantum Electron., 21, 728–739 (1978). https://doi.org/10.1007/BF01033055

    Article  ADS  Google Scholar 

  44. N. M. Ryskin and V. N. Titov, Radiophys. Quantum Electron., 42, 500-505 (1999). https://doi.org/10.1007/BF02677588

    Article  ADS  Google Scholar 

  45. N.P.Venediktov, V.V.Dubrov, V.E. Zapevalov, et al., Radiophys. Quantum Electron., 53, 237–243 (2010). https://doi.org/10.1007/s11141-010-9222-z

    Article  ADS  Google Scholar 

  46. N. S. Ginzburg, N.A. Zavol’skii, G. S. Nusinovich, and A. S. Sergeev, Radiophys. Quantum Electron., 29, 89–97 (1986). https://doi.org/10.1007/BF01034008

    Article  ADS  Google Scholar 

  47. I. V. Zotova, N. S. Ginzburg, G. G. Denisov, et al., Radiophys. Quantum Electron., 58, 684–693 (2016). https://doi.org/10.1007/s11141-016-9640-7

    Article  ADS  Google Scholar 

  48. N. S. Ginzburg and A. S. Sergeev, Zh. Tekh. Fiz. 61, No. 6, 133–140 (1991).

    Google Scholar 

  49. V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt. Commun., 30, No. 3, 409–412 (1979). https://doi.org/10.1016/0030-4018(79)90382-1

    Article  ADS  Google Scholar 

  50. G. Dattoli, A. Renieri, and A. Torre, Lectures on the Free Electron Laser Theory and Related Topics, World Sci., Singapore (1993).

    Book  Google Scholar 

  51. N. S. Ginzburg, M. I. Petelin, and A. S. Sergeev, Opt. Commun., 55, No. 4, 283–288 (1985). https://doi.org/10.1016/0030-4018(85)90345-1

    Article  ADS  Google Scholar 

  52. R. Kompfner, J. British Institution of Radio Engineers, 10, Nos. 8–9, 283–289 (1950). https://doi.org/10.1049/jbire.1950.0028

    Article  Google Scholar 

  53. G. S. Nusinovich and M.T.Walter, IEEE Trans. Plasma Sci., 30, No. 3, 922–926 (2002). https://doi.org/10.1109/TPS.2002.801565

    Article  ADS  Google Scholar 

  54. C. S. Kou, K. R. Chu, D. B. McDermott, and N.C. Luhmann Jr., Phys. Rev. E, 51, 642 (1995). https://doi.org/10.1103/PhysRevE.51.642

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Kocharovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 796–824, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, N.S., Zotova, I.V., Kocharovskaya, E.R. et al. Self-Induced Transparency Solitons and Dissipative Solitons in Microwave Electronic Systems. Radiophys Quantum El 63, 716–741 (2021). https://doi.org/10.1007/s11141-021-10092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10092-w

Navigation