Skip to main content
Log in

Alfvén Wave Self-Interaction in a Plasma with Thermal Misbalance

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the Alfvén wave self-interaction in a plasma with thermal misbalance. To describe this process, a system of truncated equations is obtained that allows using a relatively simple algorithm for its numerical solution. The obtained truncated system describes the self-interaction of Alfvén waves under various conditions of thermal misbalance and thermal instabilities. The results obtained by numerically solving the truncated system are consistent with the results obtained by solving the full system of one-dimensional MHD equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alfvén, Nature, 150, No. 3805, 405–406 (1942). https://doi.org/10.1038/150405d0

    Article  ADS  Google Scholar 

  2. H. Alfvén, Arkiv for Matematik, Astronomi och Fysik, 29B, 1–7 (1943).

  3. H. Alfvén and B. Lindblad, Mon. Not. Roy. Astron. Soc., 107, No. 2, 211–219 (1947). https://doi.org/10.1093/mnras/107.2.211

    Article  ADS  Google Scholar 

  4. D. E. Osterbrock, Astrophys. J., 134, 347–388 (1961). https://doi.org/https://doi.org/10.1086/147165

  5. J. Heyvaerts and E. R. Priest, Astron. Astrophys., 117, 220–234 (1983).

    ADS  Google Scholar 

  6. D. G.Wentzel, Solar Phys., 39, No. 1, 129–140 (1974). https://doi.org/https://doi.org/10.1007/BF00154975

  7. D. G.Wentzel, Solar Phys., 50, No. 2, 343–360. https://doi.org/https://doi.org/10.1007/BF00155297

  8. G. Brodin and L. Stenflo, J. Plasma Phys., 39, No. 2, 277–284 (1988). https://doi.org/https://doi.org/10.1017/S0022377800013027

  9. J. V. Hollweg, S. Jackson, and D. Galloway, Solar Phys., 75, Nos. 1–2, 35–61 (1982). https://doi.org/https://doi.org/10.1007/BF00153458

  10. G.C. Boynton and U.Torkelsson, Astron. Astrophys., 308, 299–308 (1996).

    ADS  Google Scholar 

  11. V. M. Nakariakov, L.Ofman, and T.D.Arber, Astron. Astrophys., 353, 741–748 (2000).

    ADS  Google Scholar 

  12. J. Zheng, Y.Chen, and M.Yu, Phys. Scr., 91, No. 1, 015601 (2015). https://doi.org/https://doi.org/10.1088/0031-8949/91/1/015601

  13. S. D.T. Grant, D. B. Jess, T. V. Zaqarashvili, et al., Nature Phys., 14, No. 5, 480–483 (2018). https://doi.org/https://doi.org/10.1038/s41567-018-0058-3

  14. J. A. McLaughlin, I. De Moortel, and A. W. Hood, Astron. Astrophys., 527, A149 (2011). https://doi.org/https://doi.org/10.1051/0004-6361/201015552

  15. R.H. Cohen and R.M. Kulsrud, Phys. Fluids, 17, No 12, 2215–2225 (1974). https://doi.org/https://doi.org/10.1063/1.1694695

  16. E.Verwichte, V. M. Nakariakov, and A. W. Longbottom, J. Plasma Phys., 62, No. 2, 219–232 (1999). https://doi.org/https://doi.org/10.1017/S0022377899007771

  17. S. V. Farahani, V.M.Nakariakov, E.Verwichte, et al., Astron. Astrophys., 544, A127 (2012). https://doi.org/https://doi.org/10.1051/0004-6361/201219569

  18. G. B. Field, Astrophys. J., 142, 531–567 (1965). https://doi.org/https://doi.org/10.1086/148317

  19. J. Heyvaerts, Astron. Astrophys., 37, No. 1, 65–73 (1974).

    MathSciNet  ADS  Google Scholar 

  20. V. M. Nakariakov, C.A.Mendoza-Briceño, and S.M.H. Ibáñez, Astrophys. J ., 528, No. 2, 767–775 (2000). https://doi.org/https://doi.org/10.1086/308195

  21. R.Chin, E.Verwichte, G.Rowlands, et al., Phys. Plasmas, 17, No. 3, 032107 (2010). https://doi.org/https://doi.org/10.1063/1.3314721

  22. D. I. Zevershinskii and N. E.Molevich, Tech. Phys. Lett., 39, 676–679 (2013). https://doi.org/https://doi.org/10.1134/S1063785013080130

  23. D. I. Zavershinskii, D. Y.Kolotkov, V.M.Nakariakov, et al., Phys. Plasmas, 26, No. 8, 082113 (2019). https://doi.org/https://doi.org/10.1063/1.5115224

  24. V. M. Nakariakov and B.Roberts, Phys. Let. A, 254, No. 6, 314–318 (1999). https://doi.org/https://doi.org/10.1016/S0375-9601(99)00136-X

  25. N. E. Molevich, D. I. Zavershinsky, and V.G.Galimov, Astrophys. Space Sci., 334, 35–44 (2011). https://doi.org/https://doi.org/10.1007/s10509-011-0683-0

  26. D. Y.Kolotkov, V.M.Nakariakov, and D. I. Zavershinskii, Astron. Astrophys., 628, A133 (2019). https://doi.org/https://doi.org/10.1051/0004-6361/201936072

  27. D. I. Zavershinskiy and N. E.Molevich, Astrophys. Space Sci., 358, 22 (2015). https://doi.org/https://doi.org/10.1007/s10509-015-2418-0

  28. S. S. Belov, N.E.Molevich, and D. I. Zavershinskii, Tech. Phys. Lett., 44, 199–202 (2018). https://doi.org/https://doi.org/10.1134/S1063785018030057

  29. S. S. Belov, N.E.Molevich, and D. I. Zavershinskii, Rus. Phys. J., 62, No. 2, 179–185 (2019). https://doi.org/https://doi.org/10.1007/s11182-019-01699-8

  30. S. S. Belov, N.E.Molevich, and D. I. Zavershinskii, Phys. Scr., 94, No. 10, 105605 (2019). https://doi.org/https://doi.org/10.1088/1402-4896/ab2f02

  31. E. Priest, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge (2014).

    Google Scholar 

  32. E. N. Parker, Astrophys. J., 117, 431–436 (1953). https://doi.org/https://doi.org/10.1086/145707

  33. N. E. Molevich and A.N.Oraevskii, J. Exp. Theor. Phys., 67, 504–508 (1988).

    Google Scholar 

  34. R. V.Khokhlov, Radiotekh. Élektron., 6, 917–925 (1961).

    Google Scholar 

  35. S. A. Akhmanov, Sov. Phys. Usp., 29, 589–606 (1986). https://doi.org/:10.1070/PU1986v029n07ABEH003456

    Article  ADS  Google Scholar 

  36. J.P. Boris and D. L. Book, J. Comput. Phys., 11, No. 1, 38–69 (1973). https://doi.org/https://doi.org/10.1016/0021-9991(73)90147-2

  37. G.Toth and D.Odstrcil, J. Comput. Phys., 128, No. 1, 82–100 (1996). https://doi.org/https://doi.org/10.1006/jcph.1996.0197

  38. R.Rosner, W.H.Tucker, and G. S.Vaiana, Astrophys. J., 220, 643–645 (1978). https://doi.org/https://doi.org/10.1086/155949

  39. R.B.Dahlburg and J. T.Mariska, Solar Phys., 117, No. 1, 51–56 (1988). https://doi.org/https://doi.org/10.1007/BF00148571

  40. S. M. H. Ibanez and T.O.B. Escalona, Astrophys. J., 415, 335–341 (1993). https://doi.org/https://doi.org/10.1086/173167

  41. K.P. Dere, E. Landi, H. E.Mason, et al., Astron. Astrophys. Supplement Series, 125, No. 1, 149–173 (1997).

    Article  ADS  Google Scholar 

  42. K. V.Krasnobaev, R.R.Tagirova, S. I.Arafailov, et al., Astron. Lett., 42, No. 7, 460–473 (2016). https://doi.org/https://doi.org/10.1134/S1063773716070057

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Belov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 771–780, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, S.A., Molevich, N.E. & Zavershinskii, D.I. Alfvén Wave Self-Interaction in a Plasma with Thermal Misbalance. Radiophys Quantum El 63, 694–702 (2021). https://doi.org/10.1007/s11141-021-10090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10090-y

Navigation