Skip to main content

Advertisement

Log in

Species identity drives ecosystem function in a subsidy-dependent coastal ecosystem

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Declines in species diversity carry profound implications for ecosystem functioning. Communities of primary producers and consumers interact on evolutionary as well as ecological time scales, shaping complex relationships between biodiversity and ecosystem functioning. In subsidized ecosystems, resource inputs are independent of consumer actions, offering a simplified view of the relationship between species diversity and function for higher trophic levels. With food webs supported by substantial but variable inputs of detritus from adjacent marine ecosystems, sandy beaches are classic examples of subsidized ecosystems. We investigated effects of consumer species diversity and identity on a key ecological function, consumption of kelp wrack from nearshore giant kelp (Macrocystis pyrifera) forests. We assessed effects of species richness on kelp consumption by experimentally manipulating richness of six common species of invertebrate detritivores in laboratory mesocosms and conducting field assays of kelp consumption on beaches. Consumer richness had no effect on kelp consumption in the field and a slight negative effect in laboratory experiments. Kelp consumption was most strongly affected by the species composition of the detritivore community. Species identity and body size of intertidal detritivores drove variation in kelp consumption rates in both experiments and field assays. Our results provide further evidence that species traits, rather than richness per se, influence ecosystem function most, particularly in detrital-based food webs with high functional redundancy across species. On sandy beaches, where biodiversity is threatened by rising sea levels and expanding development, our findings suggest that loss of large-bodied consumer species could disproportionally impact ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allgeier JE, Burkepile DE, Layman CA (2017) Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob Change Biol 23:2166–2178

    Article  Google Scholar 

  • Allison GW (1999) The implications of experimental design for biodiversity manipulations. Am Nat 153:26–45

    Article  PubMed  Google Scholar 

  • Bailey RA, Reiss J (2014) Design and analysis of experiments testing for biodiversity effects in ecology. J Stat Plan Inference 144:69–80

    Article  Google Scholar 

  • Bastian M, Pearson RG, Boyero L (2008) Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral Ecol 33:301–306

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Benedetti-Cecchi L (2004) Increasing accuracy of causal inference in experimental analyses of biodiversity. Funct Ecol 18:761–768

    Article  Google Scholar 

  • Bessa F, Baeta A, Marques JC (2014) Niche separation amongst sympatric species at exposed sandy shores with contrasting wrack availabilities illustrated by stable isotopic analysis. Ecol Ind 36:694–702

    Article  CAS  Google Scholar 

  • Bond EM, Chase JM (2002) Biodiversity and ecosystem functioning at local and regional spatial scales. Ecol Lett 5:467–470

    Article  Google Scholar 

  • Bracken MES, Stachowicz JJ (2006) Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397–2403

    Article  PubMed  Google Scholar 

  • Brose U (2008) Complex food webs prevent competitive exclusion among producer species. Philos Trans R Soc B 275:2507–2514

    Google Scholar 

  • Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans R Soc B 371:20150267

    Article  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Blandenier MFC, Cushing L (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Brose U, Blanchard JL, Eklof A, Galiana N, Hartvig M, Hirt MR, Kalinkat G, Nordstrom MC, O’Gorman EJ, Rall BC, Schneider FD, Thebault E, Jacob U (2016) Predicting the consequences of species loss using size-structured biodiversity approaches. Biol Rev 92:684–697

    Article  PubMed  Google Scholar 

  • Brown A, McLachlan A (1990) The ecology of sandy shores. Elsevier, Amsterdam, p 340

    Google Scholar 

  • Brown AC, McLachlan A (2006) The ecology of sandy shores (second edition). Academic Press, Cambridge

    Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Cardillo M (2006) Biological determinants of extinction risk: why are smaller species less vulnerable? Anim Conserv 6:63–69

    Article  Google Scholar 

  • Cardinale BJ, Ives AR, Inchausti P (2004) Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104:437–450

    Article  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259

    Article  Google Scholar 

  • Cragg RG, Bardgett RD (2001) How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol Biogeochem 33:2073–2081

    Article  CAS  Google Scholar 

  • Creed RP, Cherry RP, Pflaum JR, Wood CJ (2009) Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118:723–732

    Article  Google Scholar 

  • Daam MA, Teixeira H, Lillebo AI, Nogueira AJA (2019) Establishing causal links between aquatic biodiversity and ecosystem functioning: status and research needs. Sci Total Environ 656:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • Dangles O, Malmqvist B (2004) Species richness-decomposition relationships depend on species dominance. Ecol Lett 7:395–402

    Article  Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12

    Article  Google Scholar 

  • Douglass JG, Duffy JE, Bruno JF (2008) Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community. Ecol Lett 11:598–608

    Article  PubMed  Google Scholar 

  • Downing AL, Leibold MA (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature 416:837–841

    Article  CAS  PubMed  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  • Duffy JE, Macdonald KS, Rhode JM, Parker JD (2001) Grazer diversity, functional redundancy and productivity in seagrass beds: an experimental test. Ecology 82:2417–2434

    Article  Google Scholar 

  • Duffy JE, Richardson JP, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645

    Article  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  PubMed  Google Scholar 

  • Duffy JE, Goodwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549:261–264

    Article  CAS  PubMed  Google Scholar 

  • Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, Rodil IF, Revell DL, Schroeter S (2008) Ecological effects of coastal armoring on sandy beaches. Mar Ecol 29:160–170

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, Page HM, Schimel JP (2011) Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuaries Coasts 34:839–850

    Article  CAS  Google Scholar 

  • Dugan JE, Hubbard DM, Quigley BJ (2013) Beyond beach width: Steps toward identifying and integrating ecological envelopes with geomorphic features and datums for sandy beach ecosystems. Geomorphology 199:95–105

    Article  Google Scholar 

  • Dugan JE, Emery KA, Alber M, Alexander CR, Byers JE, Gehman AM, McLenaghan N, Sojka SE (2017) Generalizing ecological effects of shoreline armoring across soft sediment environments. Estuaries Coasts. https://doi.org/10.10007/s12237-017-0254-x

    Article  Google Scholar 

  • Dyer LA, Letourneau D (2003) Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecol Lett 6:60–68

    Article  Google Scholar 

  • Edwards KF, Aquilino KM, Best RJ, Sellheim KL, Stachowicz JJ (2010) Prey diversity is associated with weaker consumer effects in a meta-analysis of benthic marine experiments. Ecol Lett 13:194–201

    Article  PubMed  Google Scholar 

  • Filip J, Bauer B, Hillebrand H, Beniermann A, Gaedke U, Moorthi SD (2014) Multitrophic diversity effects depend on consumer specialization and species-specific growth and grazing rates. Oikos 123:912–922

    Article  Google Scholar 

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C, Slade EM, Steffan-Dewenter I, Emmerson M, Potts SG, Tscharntke T, Weisser W, Bommarco R (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B 282:20142620

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703

    Article  Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  PubMed  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:72–380

    Article  Google Scholar 

  • Godbold JA, Solan M, Killham K (2009) Consumer and resource diversity effects on marine macroalgal decomposition. Oikos 118:77–86

    Article  Google Scholar 

  • Gomez M, Barreiro F, Lopez J, Lastra M (2018) Effect of upper beach macrofauna on nutrient cycling of sandy beaches: metabolic rates during decay. Mar Biol 165:133

    Article  Google Scholar 

  • Gonzalez A, Cardinale BJ, Allington GRH, Byrnes J, Endsley KA, Brown DG, Hooper DU, Isbell F, O’Connor MI, Loreau M (2016) Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97:1949–1960

    Article  PubMed  Google Scholar 

  • Grafen A, Hails R (2002) Modern statistics for the life sciences. Oxford University Press, Oxford

    Google Scholar 

  • Gravel D, Bell T, Barbera C, Bouvier T, Pommier T, Venail P, Mouquet N (2011) Experimental niche evolution alters the strength of the diversity-productivity relationship. Nature 469:89–92

    Article  CAS  PubMed  Google Scholar 

  • Griffin JN, Byrnes JEK, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta analysis. Ecology 94:2180–2187

    Article  PubMed  Google Scholar 

  • Griffiths CL, Stenton-Dozey J (1981) The fauna and rate of degradation of stranded kelp. Estuar Coast Shelf Sci 12:645–653

    Article  Google Scholar 

  • Hagen EM, McCluney KE, Wyant KA, Soykan CU, Keller AC, Luttermoser KC, Holmes EJ, Moore JC, Sabo JC (2012) A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121:1507–1515

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • Heck KL, Carruthers TJB, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize marine and terrestrial consumers. Ecosystems 11:1198–1210

    Article  Google Scholar 

  • Henderson CJ, Gilby BL, Schlacher TA, Connolly RM, Sheaves M, Maxwell PS, Flint N, Borland HP, Martin TSH, Olds AD (2019) Low redundancy and complementarity shape ecosystem function in a low-diversity ecosystem. J Anim Ecol. https://doi.org/10.1111/1365-2656.13148

    Article  PubMed  Google Scholar 

  • Hensel MJS, Silliman BR (2013) Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc Natl Acad Sci USA 110:20621–20626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekman D, McCary MA, Dreyer J, Gratton C (2019) Reducing allochthonous resources in a subarctic grassland alters arthropod food webs via predator diet and density. Ecosphere 10(2):e02593

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vadermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor ML (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  PubMed  Google Scholar 

  • Hutchinson G (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Ieno EN, Solan M, Batty P, Pierce GJ (2006) How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Mar Ecol Prog Ser 311:263–271

    Article  Google Scholar 

  • Ince R, Hyndes GA, Lavery PS, Vanderklift MA (2007) Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar Coast Shelf Sci 74:77–86

    Article  Google Scholar 

  • Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol Lett 8:102–116

    Article  Google Scholar 

  • Jaramillo E, Dugan JE, Hubbard DM, Melnick D, Manzano M, Duarte C, Campos C, Sanchez R (2012) Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean coast. PLoS ONE 7:e35348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaramillo E, Dugan JE, Hubbard DM, Contreras H, Duarte C, Acuna E, Schoeman DS (2017) Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects. PLoS ONE 12:e0177116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonsson M, Malmqvist B (2000) Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89:519–523

    Article  Google Scholar 

  • Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255

    Article  PubMed  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Article  Google Scholar 

  • Klemmer AJ, Wissinger SA, Grieg HS, Ostrofsky ML (2012) Nonlinear effects of consumer density on multiple ecosystem processes. J Anim Ecol 81:770–780

    Article  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  • Lastra M, Page HM, Dugan JE, Hubbard DM, Rodil IF (2008) Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Mar Biol 154:163–174

    Article  Google Scholar 

  • Lefcheck JS, Duffy JE (2015) Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983

    Article  PubMed  Google Scholar 

  • Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 6:6936

    Article  CAS  PubMed  Google Scholar 

  • Leroux SJ, Loreau M (2008) Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol Lett 11:1147–1156

    Article  PubMed  Google Scholar 

  • Little CJ, Altermatt F (2018) Species turnover and invasion of dominant freshwater invertebrates alter biodiversity-ecosystem-function relationship. Ecol Monogr 88:461–480

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Lowman HE, Emery KA, Kubler-Dudgeon L, Dugan JE, Melack JM (2019) Contribution of macroalgal wrack consumers to dissolved inorganic nitrogen concentrations in intertidal pore waters of sandy beaches. Estuar Coast Shelf Sci 219:363–371

    Article  CAS  Google Scholar 

  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J, Levin SA (2006) The evolution of resource adaptation: how generalist and specialist consumers evolve. Bull Math Biol 68:1111–1123

    Article  PubMed  Google Scholar 

  • Matthews B, Narwani A, Hausch S, Nonaka E, Peter H, Yamaichi M, Sullam KE, Bird KC, Thomas MK, Hanley TC, Turner CB (2011) Toward an integration of evolutionary biology and ecosystem science. Ecol Lett 14:690–701

    Article  PubMed  Google Scholar 

  • Michaud KM, Emery KA, Dugan JE, Hubbard DM, Miller RJ (2019) Wrack resource use by intertidal consumers on sandy beaches. Estuar Coast Shelf Sci 221:66–71

    Article  Google Scholar 

  • Mihuc TB (1997) The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshw Biol 37:455–462

    Article  Google Scholar 

  • Mihuc TB, Minshall GW (1995) Trophic generalists vs. trophic specialists: implications for food web dynamics in post-fire streams. Ecology 76:2361–2372

    Article  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Myers MR, Barnard PL, Beighley E, Cayan DR, Dugan JE, Feng D, Hubbard DM, Iacobellis SF, Melack JM, Pagel HM (2019) A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean Coast Manag 182:104921

    Article  Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    Article  Google Scholar 

  • Naeem S, Hakansson K, Lawton JH, Crawley MJ, Thompson LJ (1996) Biodiversity and plant productivity in a model assemblage of plant species. Oikos 76:259–264

    Article  Google Scholar 

  • Naeem S, Hahn DR, Schuurman G (2000) Producer-decomposer co-dependency influences biodiversity effects. Nature 403:762–764

    Article  CAS  PubMed  Google Scholar 

  • Narwani A, Mazumder A (2010) Community composition and consumer identity determine the effect of resource species diversity on high rates of consumption. Ecology 91:3441–3447

    Article  PubMed  Google Scholar 

  • Norkko A, Villnas A, Norkko J, Valanko S, Pilditch C (2013) Size matters: implications of the loss of large individuals for ecosystem function. Sci Rep 3:2646

    Article  PubMed  PubMed Central  Google Scholar 

  • Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, Leps J, Lewis OT, Pokon R, Stewart AJA, Samuelson GA, Weiblen GD (2010) Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • O’Connor NE, Crowe TP (2005) Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86:1783–1796

    Article  Google Scholar 

  • O’Connor MI, Gonzalez A, Byrnes JEK, Cardinale BJ, Duffy JE, Gamfeldt L, Griffin JN, Hooper D, Hungate BA, Paquette A, Thompson PL, Dee LE, Dolan KL (2016) A general biodiversity-function relationship is mediated by trophic level. Oikos 126:18–31

    Article  Google Scholar 

  • Ohlberger J (2013) Climate warming and ectotherm body size – from individual physiology to community ecology. Funct Ecol 27:991–1001

    Article  Google Scholar 

  • Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Glob Change Biol 21:396–406

    Article  Google Scholar 

  • Poisot T, Mouquet N, Gravel D (2013) Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol Lett 16:853–861

    Article  PubMed  Google Scholar 

  • Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514

    Article  Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendry G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Bailey RA, Cassio F, Woodward G, Pascoal C (2010) Assessing the contribution of micro-organisms and macrofauna to biodiversity-ecosystem functioning relationships in freshwater microcosms. Adv Ecol Res 43:151–176

    Article  Google Scholar 

  • Reiss J, Bailey RA, Perkins DM, Pluchinotta A, Woodward G (2011) Testing effects of consumer richness, evenness and body size on ecosystem function. J Anim Ecol 80:1145–1154

    Article  PubMed  Google Scholar 

  • Santonja M, Pellan L, Piscart C (2018) Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecol Evol 8:2542–2553

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenon S, Thrush SF (2020) Unraveling ecosystem function in interitdal soft sediments: the role of density-driven interactions. Sci Rep 10:11909

    Article  CAS  Google Scholar 

  • Schlacher TA, Dugan J, Schoeman DS, Lastra M, Jones A, Scapini F, McLachlan A, Defeo O (2007) Sandy beaches at the brink. Divers Distrib 13:556–560

    Article  Google Scholar 

  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar Ecol 29:70–90

    Article  Google Scholar 

  • Schlacher TA, Hutton BM, Gilby BL, Porch N, Maguire GS, Maslo B, Connolly RM, Olds AD, Weston MA (2017) Algal subsidies enhance invertebrate prey for threatened shorebirds: a novel conservation tool on ocean beaches. Estuar Coast Shelf Sci 191:28–38

    Article  Google Scholar 

  • Schooler NK, Dugan JE, Hubbard DM, Straughan D (2017) Local scale processes drive long-term change in biodiversity of sandy beach ecosystems. Ecol Evol 7:4822–4834

    Article  PubMed  PubMed Central  Google Scholar 

  • Schooler NK, Dugan JE, Hubbard DM (2019) No lines in the sand: Impacts of intense mechanized maintenance regimes on sandy beach ecosystems span the intertidal zone on urban coasts. Ecol Indic 106:105457

    Article  Google Scholar 

  • Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122:297–305

    Article  CAS  PubMed  Google Scholar 

  • Seguin A, Harvey E, Archambault P, Nozais C, Gravel D (2014) Body size as a predictor of species loss effect on ecosystem functioning. Sci Rep 4:4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Chang 1:401–406

    Article  Google Scholar 

  • Silliman BR, Zieman JC (2001) Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830–2845

    Article  Google Scholar 

  • Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Letter 6:509–517

    Article  Google Scholar 

  • Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459

    Article  CAS  PubMed  Google Scholar 

  • Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T (2010) Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–1434

    Article  PubMed  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation. Annu Rev Ecol Evol Syst 36:267–294

    Article  Google Scholar 

  • Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Stoker D, Falkner AJ, Murray KM, Lang AK, Barnum TR, Hepinstall-Cymerman J, Conroy MJ, Cooper RJ, Pringle CM (2017) Decomposition of terrestrial resource subsidies in headwater streams: does consumer diversity matter? Ecosphere 8:e01868

    Article  Google Scholar 

  • Tarr JG, Tarr PW (1987) Seasonal abundance and the distribution of coastal birds on the northern Skeleton Coast, south west Africa/Namibia. Modoqua 15:63–72

    Google Scholar 

  • Thebault E, Loreau M (2003) Food-web constraints on biodiversity-ecosystem functioning relationships. Proc Natl Acad Sci USA 100:14949–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thebault E, Loreau M (2006) The relationship between biodiversity and ecosystem functioning in food webs. Ecol Res 21:17–25

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L (2004) Extinction risk from climate change. Nature 427:145

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493

    Article  Google Scholar 

  • Tonin AM, Pozo J, Monroy S, Basaguren A, Perez J, Goncalves JF Jr, Pearson R, Cardinale BJ, Boyero L (2018) Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J Anim Ecol 87:1465–1474

    Article  PubMed  Google Scholar 

  • Treplin M, Pennings SC, Zimmer M (2013) Decomposition of leaf litter in a U.S. saltmarsh is driven by dominant species, not species complementarity. Wetlands 33:83–89

    Article  Google Scholar 

  • van der Plas F (2019) Biodiversity and ecosystem function in naturally assembled communities. Biol Rev 94:1220–1245

    PubMed  Google Scholar 

  • Verberk WCEP, Van Der Velde G, Esselink H (2010) Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. J Anim Ecol 79:589–601

    Article  PubMed  Google Scholar 

  • Vetter EW (1995) Detritus-based patches of high secondary production in the nearshore benthos. Mar Ecol Prog Ser 120:251–262

    Article  Google Scholar 

  • Vitousek S, Barnard PL, Limber P (2017) Can beaches survive climate change? J Geophys Res Earth Surf 122:1060–1067

    Article  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104

    Article  CAS  Google Scholar 

  • Walsh MR, DeLong JP, Hanely TC, Post DM (2012) A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function. Proc R Soc B 279:3184–3192

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Yutani H (2019) Welcome to the Tidyverse. J Open Source Softw 4(43):1686

    Article  Google Scholar 

  • Winfree R, Fox J, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635

    Article  PubMed  Google Scholar 

  • Wohlgemuth D, Solan M, Godbold JA (2016) Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Sci Rep 6:39325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  PubMed  Google Scholar 

  • Youngsteadt E, Henderson RC, Savage AM, Ernst AF, Dunn RR, Frank SD (2014) Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods. Glob Change Biol 21:1103–1115

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Nicholas Schooler, David Hubbard, Jessica Madden and numerous undergraduate interns for their laboratory and field support. Helpful comments from David Hubbard contributed to our experiment and analysis. We thank the reviewers and the handling editor for their constructive and insightful suggestions that improved our revised manuscript. We gratefully acknowledge support from the U.S. National Science Foundation for J. Dugan and R. Miller (OCE 1458845) and for the Santa Barbara Coastal Long-Term Ecological Research program (SBC LTER, OCE 1232779 & 1831937).

Funding

This study was supported by Grants from the US National Science Foundation including OCE 1458845 and the Santa Barbara Coastal Long-Term Ecological Research project (OCE 1232779, OCE 1831937).

Author information

Authors and Affiliations

Authors

Contributions

KAE, JED and RJM conceived and designed the study, KAE performed the experiments, KAE and RAB conducted the data analyses, and all authors contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kyle A. Emery.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Peter S Petraitis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 529 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, K.A., Dugan, J.E., Bailey, R.A. et al. Species identity drives ecosystem function in a subsidy-dependent coastal ecosystem. Oecologia 196, 1195–1206 (2021). https://doi.org/10.1007/s00442-021-05002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-05002-w

Keywords

Navigation