Skip to main content

Advertisement

Log in

Unpredicted Visible Light Induced Advanced Photocatalytic Performance of Eu Doped CaTiO3 Nanoparticles Prepared by Facile Sol–Gel Technique

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Here, we propose a novel photocatalyst of europium doped calcium titanate (Eu:CaTiO3) were synthesized by simple sol–gel method. The synthesized catalyst samples were further annealed at various temperatures (500, 700 and 900 °C) under air environment in order to get the high order crystalline nature. Role of annealing temperature is vital to improving the structural, optical and photocatalytic behavior of the samples. XRD, SEM and TEM results illustrate that Eu:CaTiO3 catalyst have nanocrystalline with orthorhombic structure and individual spherical shaped morphology (size of the nanoparticles of 35–50 nm). A considerable red shift in the absorption edge and significant decrease in the band gap energy was found while the annealing temperature is increased from 500 to 700 °C. Recombination of photo-generated electron–hole pair was further demonstrated by PL spectra investigation. The photo-degradation test was monitored methyl orange (MO) and rhodamine B (RhB) dye solutions under visible light irradiation. The 900 °C annealed sample showed superior photocatalytic performance such as high degradation efficiency (93%), huge first order kinetics (0.0932 min−1) and long term stability towards MO dye than RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. T. Chung, G. E. Fulk, and A. W. Andrews (1981). Appl. Environ. Microbiol. 42, 641–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. L. Wu, Y. H. Cheng, F. Xiang, Z. R. Jia, Q. Xie, G. Q. Wu, and H. G. Wu (2016). Mater. Sci. Semicond. Process. 41, 6–11.

    Article  CAS  Google Scholar 

  3. B. Halling-Sørensen, S. Nors Nielsen, P. Lanzky, F. Ingerslev, H. Holten Lützhøft, and S. Jørgensen (1998). Chemosphere 36, 357–393.

    Article  PubMed  Google Scholar 

  4. H. Czili and A. Horvath (2009). Appl. Catal. B 89, 342–348.

    Article  CAS  Google Scholar 

  5. S. Devipriya and S. Yesodharan (2005). Sol. Energy Mater. Sol. Cells 86, 309–348.

    Article  CAS  Google Scholar 

  6. D. Wang, R. Yu, Y. Chen, N. Kumada, N. Kinomura, and M. Takano (2004). Solid State Ion. 172, 101–104.

    Article  CAS  Google Scholar 

  7. K. Ando (2000). Solid State Sci. 128, 211–214.

    CAS  Google Scholar 

  8. M. Shim, C. Wang, D. J. Norris, and P. Guyot-Sionnest (2001). MRS Bull. 26, 1005–1008.

    Article  CAS  Google Scholar 

  9. V. N. Golovach and D. Loss (2000). Semicond. Sci. Technol. 17, 355.

    Article  Google Scholar 

  10. Z. Zou, J. Ye, K. Sayama, and H. Arakawa (2001). Nature 414, 625–627.

    Article  CAS  PubMed  Google Scholar 

  11. W. C. Chan and S. Nie (1998). Science 281, 2016–2018.

    Article  CAS  PubMed  Google Scholar 

  12. S. Rengaraj, C. K. Joo, Y. Kim, and J. Yi (2003). J. Hazard. Mater. 102, 257–275.

    Article  CAS  PubMed  Google Scholar 

  13. A. Hafez and S. El-Mariharawy (2004). Desalination 165, 141–151.

    Article  CAS  Google Scholar 

  14. S. H. Park, J. S. Park, S. D. Yim, S. H. Park, Y. M. Lee, and C. S. Kim (2008). J. Power Sources 181, 259–266.

    Article  CAS  Google Scholar 

  15. M. Parthibavarman, M. Karthik, P. Sathishkumar, and R. Poonguzhali (2018). J. Iran. Chem. Soc. 15, 1419–1430.

    Article  CAS  Google Scholar 

  16. S. Kumaresan, K. Vallalperuman, S. Sathishkumar, M. Karthik, and P. SivaKarthik (2017). J. Mater. Sci. Mater. Electron. 28, 9199–9205.

    Article  CAS  Google Scholar 

  17. M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2009). J. Clust. Sci. 30, 351–363.

    Article  CAS  Google Scholar 

  18. R. Frua, H. Kawasaki, G. W. Harrison, and P. Wima (2004). Thin Solid Films 162, 453–454.

    Google Scholar 

  19. L. M. Doeswijka, H. H. C. de Moorb, H. Rogallaa, and D. H. A. Blanka (2002). Appl. Surf. Sci. 186, 453–457.

    Article  Google Scholar 

  20. L. Zhang, K. Zhao, and W. Xu (2015). Phys. Chem. Chem. Phys. 17, 7619–7623.

    Article  CAS  PubMed  Google Scholar 

  21. L. S. Ji, J. J. Li, and W. P. Fang (2010). J. Alloys Compd. 489, L13–L16.

    Article  CAS  Google Scholar 

  22. G. Q. Wang, W. Lan, G. J. Han, Y. Wang, Q. Su, and X. Q. Liu (2011). J. Alloys Compd. 509, 4150–4153.

    Article  CAS  Google Scholar 

  23. T. Puangpetch, T. Sreethawong, and S. Chavadej (2010). Int. J. Hydrog. Energy 35, 6531–6540.

    Article  CAS  Google Scholar 

  24. S. Huang, S. Guo, Q. Wang, N. Zhu, Z. Lou, L. Li, A. Shan, and H. Yuan (2015). ACS Appl. Mater. Interfaces 7, 20170–20178.

    Article  CAS  PubMed  Google Scholar 

  25. M. Jiménez, M. Ignacio Maldonado, E. M. Rodríguez, A. Hernández Ramírez, E. Saggioro, I. Carra, and J. A. Sánchez Pérez (2015). J. Chem. Technol. Biotechnol. 90, 149–157.

    Article  CAS  Google Scholar 

  26. T. Katsufuji and H. Takagi (2001). Phys. Rev. B 64, 054415.

    Article  CAS  Google Scholar 

  27. C. J. Fennie and K. M. Rabe (2006). Phys. Rev. Lett. 97, 267602.

    Article  PubMed  CAS  Google Scholar 

  28. J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, et al. (2010). Nature 466, 954.

    Article  CAS  PubMed  Google Scholar 

  29. V. V. Shvartsman, P. Borisov, W. Kleemann, S. Kamba, and T. Katsufuji (2010). Phys. Rev. B 81, 064426.

    Article  CAS  Google Scholar 

  30. K. Hatabayashi, T. Hitosugi, Y. Hirose, X. Q. Cheng, T. Shimada, and T. Hasegawa (2009). Jpn. J. Appl. Phys. 48, 100208.

    Article  CAS  Google Scholar 

  31. K. Fujita, N. Wakasugi, S. Murai, Y. Zong, and K. Tanaka (2009). Appl. Phys. Lett. 94, 062512.

    Article  CAS  Google Scholar 

  32. J. H. Lee, X. Ke, N. J. Podraza, L. F. Kourkoutis, T. Heeg, M. Roeckerath, J. W. Freeland, C. J. Fennie, J. Schubert, D. A. Muller, P. Schiffer, and D. G. Schlom (2009). Appl. Phys. Lett. 94, 212509.

    Article  CAS  Google Scholar 

  33. M. Parthibavarman, S. Sathishkumar, and S. Prabhakaran (2018). J. Mater. Sci. Mater. Electron. 29, 2341–2350.

    Article  CAS  Google Scholar 

  34. T. Wei, H. P. Liu, Y. F. Chen, H. Y. Yan, and J.-M. Liu (2011). Appl. Surf. Sci. 257, 4505–4509.

    Article  CAS  Google Scholar 

  35. J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang, and Y. Wei (2021). Mater. Today Chem. 19, 100390.

    Article  CAS  Google Scholar 

  36. S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, et al. (2021). J. Phys. Chem. Solids 150, 109891.

    Article  CAS  Google Scholar 

  37. S. Wang, X. Y. Chen, H. J. Gao, L. M. Fang, Q. W. Hu, G. A. Sun, S. N. Tang, et al. (2021). J. Nano Res. 67, 1–14.

    Article  CAS  Google Scholar 

  38. S. Wang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, et al. (2021). Chem. Eng. J. Adv. 6, 100089.

    Article  CAS  Google Scholar 

  39. M. Karthik, M. Parthibavarman, A. Kumaresan, G. Prabhakaran, V. Hariharan, R. Poonguzhali, and S. Sathishkumar (2017). J. Mater. Sci. Mater. Electron. 28, 6635–6642.

    Article  CAS  Google Scholar 

  40. M. Parthibavarman, M. Karthik, and S. Prabhakaran (2019). Vacuum 165, 96–104.

    Article  CAS  Google Scholar 

  41. M. Sumathi, A. Prakasam, and P. M. Anbarasan (2019). J. Clust. Sci. 30, 757–766.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Parthibavarman or K. Ramamoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portia, S.A.U., Parthibavarman, M. & Ramamoorthy, K. Unpredicted Visible Light Induced Advanced Photocatalytic Performance of Eu Doped CaTiO3 Nanoparticles Prepared by Facile Sol–Gel Technique. J Clust Sci 33, 2093–2102 (2022). https://doi.org/10.1007/s10876-021-02135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02135-z

Keywords

Navigation