Skip to main content
Log in

Label–free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this research, we designed a label-free fluorometric turn-on assay for trypsin and inhibitor screening, based on a spherical cationic gemini surfactant ethylene-bis (dodecyl dimethyl ammonium bromide) (EDAB)/heparin/Nile red (NR) supramolecular assembly system. The introduction of gemini surfactant EDAB as template greatly enhanced its salt resistance and resulted in the supramolecular assemblies with diameters ranging from 20 to 100 nm. The fluorometric assay for trypsin was performed by firstly disassembling with protamine (a heparin-binding protein) and then re-assembling through hydrolysis of protamine. The disassembly and reassembly of the system resulted in a turn-off first and then a turn-on behavior of the corresponding fluorescence. The overall processes were characterized by fluorescence spectra, TEM measurements and zeta potential tests. The detection level of this assembly system for trypsin was as low as 4.2 ng mL−1. Also, the EDAB/heparin/NR assembly could be used to screen the trypsin inhibitors. The assembly system was easily-fabricated and cost-effective, but also exhibited good salt tolerance in NaCl solution at the concentration of 0–500 mM. At last, the supramolecular assembly was successfully applied to detect trypsin in human urine, demonstrating its great potential on clinical diagnosis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61

    Article  CAS  Google Scholar 

  2. Byrne MF, Mitchell RM, Stiffler H, Jowell PS, Branch MS, Pappas TN, Tyler D, Baillie J (2002) Extensive investigation of patients with mild elevations of serum amylase and/or lipase is 'low yield'. Can J Gastroenterol = Journal canadien de gastroenterologie 16(12):849–854. https://doi.org/10.1155/2002/836012

  3. Mizon C, Balduyck M, Albani D, Michalski C, Burnouf T, Mizon J (1996) Development of an enzyme-linked immunosorbent assay for human plasma inter-alpha-trypsin inhibitor (ITI) using specific antibodies against each of the H1 and H2 heavy chains. J Immunol Methods 190(1):61–70. https://doi.org/10.1016/0022-1759(95)00257-x

    Article  CAS  PubMed  Google Scholar 

  4. Slysz GW, Lewis DF, Schriemer DC (2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system. J Proteome Res 5(8):1959–1966. https://doi.org/10.1021/pr060142d

    Article  CAS  PubMed  Google Scholar 

  5. Temler RS, Felber JP (1976) Radioimmunoassay of human plasma trypsin. Biochem Biophys Acta 445(3):720–728. https://doi.org/10.1016/0005-2744(76)90122-4

    Article  CAS  PubMed  Google Scholar 

  6. Miao P, Liu T, Li X, Ning L, Yin J, Han K (2013) Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens Bioelectron 49:20–24. https://doi.org/10.1016/j.bios.2013.04.038

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Du J (2016) A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate. Biosens Bioelectron 79:347–352. https://doi.org/10.1016/j.bios.2015.12.070

    Article  CAS  PubMed  Google Scholar 

  8. Liang R-P, Tian X-C, Qiu P, Qin J-D (2014) Multiplexed Electrochemical Detection of Trypsin and Chymotrypsin Based on Distinguishable Signal Nanoprobes. Anal Chem 86(18):9256–9263. https://doi.org/10.1021/ac502318x

    Article  CAS  PubMed  Google Scholar 

  9. Hayden O, Haderspoeck C, Krassnig S, Chen X, Dickert FL (2006) Surface imprinting strategies for the detection of trypsin. Analyst 131(9):1044–1050. https://doi.org/10.1039/b608354b

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Fu X, Li J (2013) Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Nanoscale 5(13):5905–5911. https://doi.org/10.1039/c3nr00637a

    Article  CAS  PubMed  Google Scholar 

  11. Sato D, Kato T (2016) Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching. Bioorg Med Chem Lett 26(23):5736–5740. https://doi.org/10.1016/j.bmcl.2016.10.053

    Article  CAS  PubMed  Google Scholar 

  12. Huang S, Li F, Liao C, Zheng B, Du J, Xiao D (2017) A selective and sensitive fluorescent probe for the determination of HSA and trypsin. Talanta 170:562–568. https://doi.org/10.1016/j.talanta.2017.01.034

    Article  CAS  PubMed  Google Scholar 

  13. Liu R, Tan Y, Zhang C, Wu J, Mei L, Jiang Y, Tan C (2013) A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. Journal of Materials Chemistry B 1(10):1402–1405. https://doi.org/10.1039/c3tb00020f

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W (2018) Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 189:92–99. https://doi.org/10.1016/j.talanta.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  15. Wu M, Wang X, Wang K, Guo Z (2017) An ultrasensitive fluorescent nanosensor for trypsin based on upconversion nanoparticles. Talanta 174:797–802. https://doi.org/10.1016/j.talanta.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhou L, Kang Q, Yu L (2018) Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 183:223–227. https://doi.org/10.1016/j.talanta.2018.02.082

    Article  CAS  PubMed  Google Scholar 

  17. Xue W, Zhang G, Zhang D, Zhu D (2010) A New Label-Free Continuous Fluorometric Assay for Trypsin and Inhibitor Screening with Tetraphenylethene Compounds. Org Lett 12(10):2274–2277. https://doi.org/10.1021/ol100626x

    Article  CAS  PubMed  Google Scholar 

  18. Xu J-P, Fang Y, Song Z-G, Mei J, Jia L, Qin AJ, Sun JZ, Ji J, Tang BZ (2011) BSA-tetraphenylethene derivative conjugates with aggregation-induced emission properties: Fluorescent probes for label-free and homogeneous detection of protease and alpha 1-antitrypsin. Analyst 136(11):2315–2321. https://doi.org/10.1039/c0an00813c

    Article  CAS  PubMed  Google Scholar 

  19. Dwivedi AK, Iyer PK (2013) A fluorescence turn on trypsin assay based on aqueous polyfluorene. J Mater Chem B 1(32):4005–4010. https://doi.org/10.1039/c3tb20712a

    Article  CAS  PubMed  Google Scholar 

  20. Seo S, Kim J, Jang G, Kim D, Lee TS (2014) Aggregation-Deaggregation-Triggered, Tunable Fluorescence of an Assay Ensemble Composed of Anionic Conjugated Polymer and Polypeptides by Enzymatic Catalysis of Trypsin. ACS Appl Mater Interfaces 6(2):918–924. https://doi.org/10.1021/am405120y

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Zhang P, Zhang S, Zhu C (2014) Label-free and real-time monitoring of trypsin activity in living cells by quantum-dot-based fluorescent sensors. Anal Methods 6(8):2499–2505. https://doi.org/10.1039/c3ay41793j

    Article  CAS  Google Scholar 

  22. Ensafi AA, Kazemifard N, Rezaei B (2015) A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation. Biosens Bioelectron 71:243–248. https://doi.org/10.1016/j.bios.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  23. Lin Y, Chapman R, Stevens MM (2014) Label-Free Multimodal Protease Detection Based on Protein/Perylene Dye Coassembly and Enzyme-Triggered Disassembly. Anal Chem 86(13):6410–6417. https://doi.org/10.1021/ac500777r

    Article  CAS  PubMed  Google Scholar 

  24. Tang B, Yang Y, Wang G, Yao Z, Zhang L, Wu H-C (2015) A simple fluorescent probe based on a pyrene derivative for rapid detection of protamine and monitoring of trypsin activity. Org Biomol Chem 13(32):8708–8712. https://doi.org/10.1039/c5ob01034a

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Li Y, Jia L, Chen S, Shen Y (2016) Ultrasensitive fluorescent detection of trypsin on the basis of surfactant-protamine assembly with tunable emission wavelength. RSC Adv 6(96):93551–93557. https://doi.org/10.1039/c6ra19220c

    Article  CAS  Google Scholar 

  26. Jia L, Xu L, Wang Z, Xu J, Ji J (2014) Label-free Fluorescent Sensor for Probing Heparin-Protein Interaction Based on Supramolecular Assemblies. Chin J Chem 32(1):85–90. https://doi.org/10.1002/cjoc.201300086

    Article  CAS  Google Scholar 

  27. Menger L (1994) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113(4):1451–1452

    Article  Google Scholar 

  28. Menger K (2000) Gemini Surfactants Angewandte Chemie (International ed in English) 39(11):1906–1920

    Article  CAS  Google Scholar 

  29. Yu D, Wang Y, Zhang J, Tian M, Han Y, Wang Y (2012) Effects of calcium ions on solubility and aggregation behavior of an anionic sulfonate gemini surfactant in aqueous solutions. J Colloid Interface Sci 381:83–88. https://doi.org/10.1016/j.jcis.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  30. Pi Y, Shang Y, Liu H, Hu Y, Jiang J (2007) Salt effect on the interactions between gemini surfactant and oppositely charged polyelectrolyte in aqueous solution. J Colloid Interface Sci 306(2):405–410. https://doi.org/10.1016/j.jcis.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y, Zhao Y, Chen L, Wang X, Sun J, Wu H, Bao F, Fan J, Zhang Q (2015) Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant. Nanoscale 7(15):6790–6797. https://doi.org/10.1039/c5nr00343a

    Article  CAS  PubMed  Google Scholar 

  32. Guerrero-Martinez A, Perez-Juste J, Carbo-Argibay E, Tardajos G, Liz-Marzan LM (2009) Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices. Angew Chem Int Ed 48(50):9484–9488. https://doi.org/10.1002/anie.200904118

    Article  CAS  Google Scholar 

  33. Bombelli C, Giansanti L, Luciani P, Mancini G (2009) Gemini Surfactant Based Carriers in Gene and Drug Delivery. Curr Med Chem 16(2):171–183. https://doi.org/10.2174/092986709787002808

    Article  CAS  PubMed  Google Scholar 

  34. Wettig SD, Verrall RE, Foldvari M (2008) Gemini surfactants: A new family of building blocks for non-viral gene delivery systems. Curr Gene Ther 8(1):9–23. https://doi.org/10.2174/156652308783688491

    Article  CAS  PubMed  Google Scholar 

  35. Khalaf AI, Hegazy MA, El-Nashar DE (2017) Synthesis and Characterization of Cationic Gemini Surfactant Modified Na-Bentonite and Its Applications for Rubber Nanocomposites. Polym Compos 38(2):396–403. https://doi.org/10.1002/pc.23598

    Article  CAS  Google Scholar 

  36. Li YJ, Wang XY, Wang YL (2006) Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants. J Phys Chem B 110(16):8499–8505. https://doi.org/10.1021/jp060532n

    Article  CAS  PubMed  Google Scholar 

  37. Du J, Liu M, Lou X, Zhao T, Wang Z, Xue Y, Zhao J, Xu Y (2012) Highly Sensitive and Selective Chip-Based Fluorescent Sensor for Mercuric Ion: Development and Comparison of Turn-On and Turn-Off Systems. Anal Chem 84(18):8060–8066. https://doi.org/10.1021/ac301954j

    Article  CAS  PubMed  Google Scholar 

  38. Shi F, Wang L, Li Y, Zhang Y, Su X (2018) A simple “turn-on” detection platform for trypsin activity and inhibitor screening based on N-acetyl-L-cysteine capped CdTe Quantum Dots. Sensors and Actuators B-Chemical 255:2733–2741. https://doi.org/10.1016/j.snb.2017.09.087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanxi (Grant No. 201801D121360) and the Fund for Shanxi 1331 Project.

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, resources, writing—review and editing, project administration and funding acquisition, L. Jia; methodology and supervision, J. X. Zhu; investigation, data curation and writing—original draft preparation, N. Yuan. All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Lan Jia.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2.85 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, N., Jia, L. & Zhu, J. Label–free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly. J Fluoresc 31, 1537–1545 (2021). https://doi.org/10.1007/s10895-021-02785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02785-2

Keywords

Navigation