Skip to main content
Log in

Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strain sensors with good stability are vital to the development of wearable healthcare monitoring systems. However, the design of strain sensor with both duration stability and environmental stability is still a challenge. In this work, we propose an ultra-stable and washable strain sensor by embedding a coupled composite film of carbon nanotube (CNT) and Ti3C2Tx MXene into polydimethylsiloxane (PDMS) matrix. The composite strain sensor with embedded microstructure and uneven surface makes it conformal to skin, while the CNT/MXene sensing layer exhibits a resistance sensitive to strain. This sensor shows reliable responses at different frequencies and with long-term cycling durability (over 1,000 cycles). Meanwhile, the CNT/MXene/PDMS composite strain sensor provides the advantages of superior anti-interference to temperature change and water washing. The results demonstrate less than 10% resistance changes as the temperature rises from −20 to 80 °C or after sonication in water for 120 min, respectively. The composite sensor is applied to monitor human joint motions, such as bending of finger, wrist and elbow. Moreover, the simultaneous monitoring of the electrocardiogram (ECG) signal and joint movement while riding a sports bicycle is demonstrated, enabling the great potential of the as-fabricated sensor in real-time human healthcare monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. F.; Pan, C. F.; Wang, Z. L. Electronic skin for closed-loop systems. ACS Nano 2019, 13, 12287–12293.

    Article  CAS  Google Scholar 

  2. Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

    Article  CAS  Google Scholar 

  3. Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

    Article  CAS  Google Scholar 

  4. Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

    Article  Google Scholar 

  5. Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.

    Article  CAS  Google Scholar 

  6. Yeo, J. C.; Yap, H. K.; Xi, W.; Wang, Z. P.; Yeow, C. H.; Lim, C. T. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. 2016, 1, 1600018.

    Article  CAS  Google Scholar 

  7. Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

    Article  Google Scholar 

  8. Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

    Article  CAS  Google Scholar 

  9. Liu, Y.; Shi, X. L.; Liu, S. R.; Li, H. P.; Zhang, H. L.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy 2019, 63, 103898.

    Article  CAS  Google Scholar 

  10. Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.

    Article  CAS  Google Scholar 

  11. Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

    Article  Google Scholar 

  12. Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.

    Article  CAS  Google Scholar 

  13. Deng, C. H.; Gao, X. P.; Lan, L. F.; He, P. H.; Zhao, X.; Zheng, W.; Chen, W. S.; Zhong, X. Z.; Wu, Y. H.; Liu, L. et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151.

    Article  CAS  Google Scholar 

  14. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698.

    Article  CAS  Google Scholar 

  15. Wu, S. Y.; Peng, S. H.; Yu, Y. Y.; Wang, C. H. Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 2020, 5, 1900908.

    Article  CAS  Google Scholar 

  16. Zhou, P. D.; Zhang, W.; Chen, L. Z.; Lin, J.; Luo, Z. L.; Liu, C. H.; Jiang, K. L. Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. Nano Res. 2021, DOI: https://doi.org/10.1007/s12274-021-3285-3.

  17. He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

    Article  CAS  Google Scholar 

  18. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  19. Cheng, Y.; Wang, R. R.; Zhai, H. T.; Sun, J. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 2017, 9, 3834–3842.

    Article  CAS  Google Scholar 

  20. Luo, C. S.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-step-printed, highly sensitive, textile-Based, tunable performance strain sensors for human motion detection. Adv. Mater. Technol. 2020, 5, 1900925.

    Article  CAS  Google Scholar 

  21. Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014, 6, 11932–11939.

    Article  CAS  Google Scholar 

  22. Woo, J.; Lee, H.; Yi, C.; Lee, J.; Won, C.; Oh, S.; Jekal, J.; Kwon, C.; Lee, S.; Song, J. et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater. 2020, 30. 1910026.

    Article  CAS  Google Scholar 

  23. Zhang, D.; Song, Y. D.; Ping, L.; Xu, S. W.; Yang, D.; Wang, Y. H.; Yang, Y. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 2019, 12, 2982–2987.

    Article  CAS  Google Scholar 

  24. Wei Y. H.; Qiao, Y. C.; Jiang, G. Y.; Wang, Y. F.; Wang, F. W.; Li, M. R.; Zhao, Y. F.; Tian, Y.; Gou, G. Y.; Tan, S. Y. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 2019, 13, 8639–8647.

    Article  CAS  Google Scholar 

  25. Liang, B. H.; Lin, Z. Q.; Chen, W. J.; He, Z. F.; Zhong, J.; Zhu, H.; Tang, Z. K.; Gui, X. C. Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 2018, 10, 13599–13606.

    Article  CAS  Google Scholar 

  26. Zhang, S.; Wen, L.; Wang, H.; Zhu, K.; Zhang, M. Vertical CNT-ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. J. Mater. Chem. C 2018, 6, 5132–5139.

    Article  CAS  Google Scholar 

  27. Amjadi, M.; Pichitpajongkit, A.; Lee, L.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  CAS  Google Scholar 

  28. Tian, H.; Shu, Y.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705.

    Article  CAS  Google Scholar 

  29. Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670.

    Article  CAS  Google Scholar 

  30. Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.

    Article  CAS  Google Scholar 

  31. Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, DOI: https://doi.org/10.1007/s12274-020-3245-3.

  32. Huang, J. Y.; Li, D. W.; Zhao, M.; Mensah, A.; Lv, P. F.; Tian, X. J.; Huang, F. L.; Ke, H. Z.; Wei, Q. F. Highly sensitive and stretchable CNT-Bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Funct. Mater. 2019, 5, 1900241.

    Google Scholar 

  33. Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly (dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.

    Article  CAS  Google Scholar 

  34. Dong, X. C.; Wei, Y.; Chen, S.; Lin, Y.; Liu, L.; Li, J. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 2018, 155, 108–116.

    Article  CAS  Google Scholar 

  35. Shi, X. L.; Liu, S. R.; Sun, Y.; Liang, J. J.; Chen, Y. S. Lowering internal friction of 0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 2018, 28, 1800850.

    Article  CAS  Google Scholar 

  36. Roh, E.; Hwang, B. U.; Kim, D.; Kim, B. Y.; Lee, N. E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.

    Article  CAS  Google Scholar 

  37. Liu, X.; Liu, D.; Lee, J. H.; Zheng, Q. B.; Du, X. H.; Zhang, X. Y.; Xu, H. R.; Wang, Z. Y.; Wu, Y.; Shen, X. et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 2282–2294.

    Article  CAS  Google Scholar 

  38. Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, O. G.; Yokota, T.; Someya, T. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett. 2018, 18, 5610–5617.

    Article  CAS  Google Scholar 

  39. Zhang, R.; Ying, C.; Gao, H.; Liu, Q. T.; Fu, X. D.; Hu, S. F. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Compos. Sci. Technol. 2019, 171, 218–225.

    Article  CAS  Google Scholar 

  40. Tian, B.; Yao, W. J.; Zeng, P.; Li, X.; Wang, H. J.; Liu, L.; Feng, Y.; Luo, C. S.; Wu, W. All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J. Mater. Chem. C 2019, 7, 809–818.

    Article  CAS  Google Scholar 

  41. Wu, W. Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 2019, 20, 187–224.

    Article  CAS  Google Scholar 

  42. Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699–706.

    Article  CAS  Google Scholar 

  43. Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

    Article  CAS  Google Scholar 

  44. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano, 2019, 13, 649–659.

    Article  CAS  Google Scholar 

  45. Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.

    CAS  Google Scholar 

  46. Wang, T.; Wang, T. J.; Weng, C. X.; Liu, L. Q.; Zhao, J.; Zhang, Z. Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 2021, DOI: https://doi.org/10.1007/s12274-020-3222-x.

  47. Pu, J. H.; Zhao, X.; Zha, X. J.; Bai, L.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 2019, 7, 15913–15923.

    Article  CAS  Google Scholar 

  48. Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66, 104134.

    Article  CAS  Google Scholar 

  49. Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

    Article  CAS  Google Scholar 

  50. Xu, X. W.; Luo, M.; He, P.; Yang, J. L. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J. Phys. D: Appl. Phys. 2020, 53, 125402.

    Article  CAS  Google Scholar 

  51. Jin, L. H.; Chortos, A.; Lian, F. F.; Pop, E.; Linder, C.; Bao, Z. N.; Cai, W. Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. USA 2018, 115, 1986–1991.

    Article  CAS  Google Scholar 

  52. Xiang, D.; Zhang, X. Z.; Li, Y. T.; Harkin-Jones E.; Zheng, Y. F.; Wang, L.; Zhao, C. X.; Wang, P. Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Compos. B Eng. 2019, 176, 107250.

    Article  CAS  Google Scholar 

  53. Zhou, Y. J.; Zhan, P. F.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 7405–7414.

    Article  CAS  Google Scholar 

  54. Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys. 2019, 52, 455401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 61804185), the National Key Research and Development Program of China (No. 2017YFA0206600), the Natural Science Foundation of Hunan Province (No. 2019JJ50804), the Science and Technology Innovation Program of Hunan Province (No. 2020RC4004), the Special Funding for the Construction of Innovative Provinces in Hunan Province (No. 2020GK2024), and Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (No. GXKL06200208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei He or Junliang Yang.

Electronic supplementary material

12274_2021_3536_MOESM1_ESM.pdf

Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Chen, Y., He, P. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3536-3

KeyWords

Navigation