Skip to main content
Log in

Influence of WO3 incorporation on synthesis, optical, elastic and radiation shielding properties of borosilicate glass system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Glass samples of structural formula (55B2O3–15SiO2–30Na2O: xWO3; with x = 0.0, 0.5, 1.0 and 1.5 weight percent) were prepared by melting and rapid quench route. Quantities of H3BO4, SiO2, Na2CO3 and WO3 were calculated, well milled and then placed in a muffle oven at a temperature of 1050 °C for 30 min. The stainless steel mold heated at 200 °C and then the melt poured between the plates to get transparent glass disks. The X-ray diffraction technique applied to glass samples with the Rigaku XRD-6000 diffractometer confirmed the amorphous structure of these glass samples. Both indirect and direct Eg show a gradual decrease trend as the concentrations of WO3 content. Makishima–Mackenzie's theory was applied to evaluate the elastic properties of the present glass system, and then, the obtained results were compared with different theoretical models. Additionally, the radiation shielding efficiency of the prepared borosilicate glass system was evaluated and interpreted based on the electromagnetic models via Geant4 simulations. The results obtained by Geant4 were compared with the predictions of theoretical values calculated by PSD software in terms of mass attenuation coefficients (MACs). The results reveal that our prepared borosilicate glass system has potential use in radiation shielding applications, wherein the balance between elastic and shielding properties can be controlled by changing the concentration of WO3 according to the desired application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M.F. Zawrah, R.M. Khattab, A.A. El-Kheshen, E. El-Fadaly, Sintering and properties of borosilicate glass/Li-Na-K-feldspar composites for electronic applications. Ceram. Int. 43(17), 15068–15073 (2017)

    Article  Google Scholar 

  2. Y. Tayal, A.S. Rao, Orange color emitting Sm3+ ions doped borosilicate glasses for optoelectronic device applications. Opt. Mater. 107, 110070 (2020)

    Article  Google Scholar 

  3. Z.M.A. El-Fattah, F. Ahmad, M.A. Hassan, Tuning the structural and optical properties in cobalt oxide-doped borosilicate glasses. J. Alloy. Compd. 728, 773–779 (2017)

    Article  Google Scholar 

  4. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021)

    Article  ADS  Google Scholar 

  5. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M.S. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021)

    Article  Google Scholar 

  6. A.S. El-Deeb, A.M. Ismail, M.Y. Hassaan, Optical, FTIR, electrical and dielectrical properties of a glass system for smart windows applications. Optik 221, 165358 (2020)

    Article  ADS  Google Scholar 

  7. P. Aly, A.A. El-Kheshen, H. Abou-Gabal, S. Agamy, Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation. J. Phys. Chem. Solids 145, 109521 (2020)

    Article  Google Scholar 

  8. W.M. Glines, Continuing needs in low-dose radiation biology for medicine and industry. Health Phys. 118(3), 294–296 (2020)

    Article  Google Scholar 

  9. T.Y. Kong, S. Kim, Y. Lee, J.K. Son, S.J. Maeng, Radioactive effluents released from Korean nuclear power plants and the resulting radiation doses to members of the public. Nucl. Eng. Technol. 49(8), 1772–1777 (2017)

    Article  Google Scholar 

  10. N.E. Bolus, Basic review of radiation biology and terminology. J. Nucl. Med. Technol. 45(4), 259–264 (2017)

    Article  Google Scholar 

  11. F.A. Mettler, M. Bhargavan, K. Faulkner, D.B. Gilley, J.E. Gray, G.S. Ibbott, J.A. Lipoti et al., Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253(2), 520–531 (2009)

    Article  Google Scholar 

  12. M. Donya, M. Radford, A. El-Guindy, D. Firmin, M.H. Yacoub, Radiation in medicine: origins, risks and aspirations. Global Cardiol. Sci. Pract. 2014(4), 57 (2015)

    Article  Google Scholar 

  13. I.R. Miousse, K.R. Kutanzi, I. Koturbash, Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int. J. Radiat. Biol. 93(5), 457–469 (2017)

    Article  Google Scholar 

  14. L. Faggioni, F. Paolicchi, L. Bastiani, D. Guido, D. Caramella, Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: results of a comprehensive survey. Eur. J. Radiol. 86, 135–142 (2017)

    Article  Google Scholar 

  15. Z.A. Alrowaili, T.A. Taha, M.I. Brahim, K.M.A. Saron, Synthesis, optical absorption and radiation shielding performance of sodium zinc borate-Er2O3 glasses. J. Electron. Mater. 50(3), 1102–1109 (2021)

    Article  ADS  Google Scholar 

  16. J.E. Martin, Physics for Radiation Protection (Wiley, New York, 2013)

    Book  Google Scholar 

  17. K. Singh, S. Singh, A.S. Dhaliwal, G. Singh, Gamma radiation shielding analysis of lead-flyash concretes. Appl. Radiat. Isot. 95, 174–179 (2015)

    Article  Google Scholar 

  18. M. Alwaeli, Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod. 166, 157–162 (2017)

    Article  Google Scholar 

  19. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

    Article  Google Scholar 

  20. M.S. Al-Buriahi, B. Tonguç, U. Perişanoğlu, E. Kavaz, The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.110

    Article  Google Scholar 

  21. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2-Ag2O-WO3 glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.091

    Article  Google Scholar 

  22. M.S. Al-Buriahi, V.P. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J. Aust. Ceram. Soc. 56, 1127–1133 (2020). https://doi.org/10.1007/s41779-020-00457-1

    Article  Google Scholar 

  23. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  24. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  ADS  Google Scholar 

  25. M.S. Al-Buriahi, D.K. Gaikwad, H.H. Hegazy, C. Sriwunkum, R. Neffati, Fe-based alloys and their shielding properties against directly and indirectly ionizing radiation by using FLUKA simulations. Phys. Scr. 96(4), 045303 (2021)

    Article  ADS  Google Scholar 

  26. T. Singh, A. Kaur, J. Sharma, P.S. Singh, Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Eng. Sci. Technol., Int. J. 21(5), 1078–1085 (2018)

    Google Scholar 

  27. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019)

    Article  Google Scholar 

  28. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym. Adv. Technol. 32, 2386–2396 (2021)

    Article  Google Scholar 

  29. M.S. Al-Buriahi, H. Arslan, H.O. Tekin, V.P. Singh, B.T. Tonguc, MoO3-TeO2 glass system for gamma ray shielding applications. Mater. Res. Express 7(2), 025202 (2020). https://doi.org/10.1088/2053-1591/ab6db4

    Article  ADS  Google Scholar 

  30. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan et al., Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126, 68 (2020). https://doi.org/10.1007/s00339-019-3254-9

    Article  ADS  Google Scholar 

  31. M.S. Al-Buriahi, H.O. Tekin, E. Kavaz et al., New transparent rare earth glasses for radiation protection applications. Appl. Phys. A 125, 866 (2019). https://doi.org/10.1007/s00339-019-3077-8

    Article  ADS  Google Scholar 

  32. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125, 482 (2019). https://doi.org/10.1007/s00339-019-2777-4

    Article  ADS  Google Scholar 

  33. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, C. Sriwunkum, M.I. Sayyed, Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses. Appl. Phys. A 126(10), 1–10 (2020)

    Article  Google Scholar 

  34. I. Kebaili, I. Boukhris, M.S. Al-Buriahi, A. Alalawi, M.I. Sayyed, Ge-Se-Sb-Ag chalcogenide glasses for nuclear radiation shielding applications. Ceram. Int. 47(1), 1303–1309 (2020)

    Article  Google Scholar 

  35. I. Kebaili, I. Boukhris, M.I. Sayyed, B. Tonguc, M.S. Al-Buriahi, Effect of TiO2/V2O5 substitution on the optical and radiation shielding properties of alkali borate glasses: a Monte Carlo investigation. Ceram. Int. 46(16), 25671–25677 (2020)

    Article  Google Scholar 

  36. I. Kebaili, M.I. Sayyed, I. Boukhris, M.S. Al-Buriahi, Gamma-ray shielding parameters of lithium borotellurite glasses using Geant4 code. Appl. Phys. A 126(7), 1–7 (2020)

    Article  Google Scholar 

  37. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  Google Scholar 

  38. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  ADS  Google Scholar 

  39. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 17(2), 147–157 (1975)

    Article  ADS  Google Scholar 

  40. A.A. El-Moneim, H.Y. Alfifi, Germanate glasses containing lead and bismuth oxides: correlation between elastic and compositional parameters. J. Non-Cryst. Solids 546, 120275 (2020)

    Article  Google Scholar 

  41. A.A. El-Moneim, R. El-Mallawany, Analysis and prediction for elastic properties of quaternary tellurite Ag2O–V2O5–MoO3–TeO2 and WO3–B2O3–MgO–TeO2 glasses. J. Non-Cryst. Solids 522, 119580 (2019)

    Article  Google Scholar 

  42. A.A. El-Moneim, Elastic moduli and Poisson’s ratio prediction in borate-based PbO-B2O3-V2O5 and Li2O-ZnO-B2O3 glass systems. J. Non-Cryst. Solids 514, 69–76 (2019)

    Article  ADS  Google Scholar 

  43. S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  44. J. Allison, K. Amako, J.E.A. Apostolakis, H.A.A.H. Araujo, P.A. Dubois, M.A.A.M. Asai, G.A.B.G. Barrand et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  45. K. Amako, S. Guatelli, V.N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen et al., Comparison of Geant4 electromagnetic physics models against the NIST reference data. IEEE Trans. Nucl. Sci. 52(4), 910–918 (2005)

    Article  ADS  Google Scholar 

  46. M.S. Al-Buriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.168

    Article  Google Scholar 

  47. M.S. Al-Buriahi, H. Arslan, B.T. Tonguç, Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data. Indian J. Pure Appl. Phys. (IJPAP) 57(6), 433–437 (2019)

    Google Scholar 

  48. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166, 108507 (2020)

    Article  Google Scholar 

  49. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, A. Alalawi, A.S. Abouhaswa, B. Tonguc, Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram. Int. 46(15), 24435–24442 (2020)

    Article  Google Scholar 

  50. T.A. Taha, S. Alomairy, S.A. Saad, H.O. Tekin, M.S. Al-Buriahi, Synthesis and dielectric relaxation behavior of 55B2O3–15SiO2–30Na2O: WO3 glass system. Ceram. Int. 47, 20201–20209 (2021)

    Article  Google Scholar 

  51. T.A. Taha, A.A. Azab, Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 1178, 39–44 (2019)

    Article  ADS  Google Scholar 

  52. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22(179), 0903–0922 (1970)

    Article  ADS  Google Scholar 

  53. R. Divina, K.A. Naseer, K. Marimuthu et al., Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J. Mater. Sci.: Mater. Electron. 31, 21486–21501 (2020). https://doi.org/10.1007/s10854-020-04662-3

    Article  Google Scholar 

  54. H. Donya, T.A. Taha, Preparation, structure and optical properties of ZnTe and PbTe nanocrystals grown in fluorophosphate glass. J. Mater. Sci.: Mater. Electron. 29(10), 8610–8616 (2018)

    Google Scholar 

  55. M.A.M. Uosif, A.M.A. Mostafa, S.A. Issa, H.O. Tekin, Z.A. Alrowaili, O. Kilicoglu, Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study. J. Non-Cryst. Solids 532, 119882 (2020)

    Article  Google Scholar 

  56. P. Basu, R. Sarangapani, B. Venkatraman, Gamma ray buildup factors for conventional shielding materials and buildup factors computed for tungsten with a thickness beyond 40 mean free paths. Appl. Radiat. Isot. 154, 108864 (2019)

    Article  Google Scholar 

  57. I.O. Olarinoye, Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies. Res. J. Chem. Sci. 1(2), 64–69 (2011)

    Google Scholar 

  58. I.O. Olarinoye, Photon buildup factors for tissues and phantom materials for penetration depth up to 100 mfp. J. Nucl. Res. Dev. 13, 57–67 (2017)

    Google Scholar 

  59. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    Article  Google Scholar 

  60. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.11.078

    Article  Google Scholar 

  61. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.093

    Article  Google Scholar 

  62. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 46(3), 3190–3202 (2020)

    Article  Google Scholar 

  63. G. Lakshminarayana, M.G. Dong, M.S. Al-Buriahi, A. Kumar, D.-E. Lee, J. Yoon, T. Park, B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. Appl. Phys. A 126(3), 1–18 (2020)

    Article  Google Scholar 

  64. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3, 29–37 (1992)

    Article  Google Scholar 

  65. F.H. Attix, Introduction to Radiological and Radiation Dosimetry (Wlley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)

    Google Scholar 

  66. N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, 4th edn. (CRC Press, Taylor and Francis Group, London, 2014), pp. 146, 150, 157

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Buriahi, M.S., Taha, T.A., Alothman, M.A. et al. Influence of WO3 incorporation on synthesis, optical, elastic and radiation shielding properties of borosilicate glass system. Eur. Phys. J. Plus 136, 779 (2021). https://doi.org/10.1140/epjp/s13360-021-01790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01790-5

Navigation