Skip to main content
Log in

A comprehensive continuum model for graphene in the framework of first strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Capture of discrete nature of nanomaterials is central to predict their behavior in high precision. To this end, various augmented continuum theories have been presented. However, their accuracy is strongly dependent on the recognition of accurate values of associated characteristic length scale parameter, and many ambiguities and uncertainties still remain about them. As main purpose of this study, the accurate values of elasticity tensor elements in the framework of first strain gradient theory are calculated for graphene with trigonal crystal system. A promising way to achieve them could be through molecular mechanics model. So that, the energy, including strain and kinetic energy, based on first strain gradient theory can be equivalent to that ones on the basis of molecular mechanics model. This successful relation results in addressing the accurate values of elasticity tensor element. In this way, the dynamic and static behaviors of graphene can be accurately investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh, Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl. Surf. Sci. 448, 71–77 (2018)

    Article  ADS  Google Scholar 

  2. A. Genoese, A. Genoese, N.L. Rizzi, G. Salerno, On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos. Part B Eng. 115, 316–329 (2017)

    Article  Google Scholar 

  3. M.A. Hartmann, M. Todt, F.G. Rammerstorfer, F.D. Fischer, O. Paris, Elastic properties of graphene obtained by computational mechanical tests. EPL (Europhys. Lett.) 103(6), 68004 (2013)

  4. R. Maranganti, P. Sharma, A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55(9), 1823–1852 (2007)

    Article  ADS  Google Scholar 

  5. H. Askes, E.C. Aifantis, Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  6. H.M. Shodja, A. Tehranchi, A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the SuttonChen potential. Philos. Mag. 90(14), 1893–1913 (2010)

    Article  ADS  Google Scholar 

  7. R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  Google Scholar 

  8. J. Torabi, R. Ansari, M. Darvizeh, A \(C^1\) continuous hexahedral element for nonlinear vibration analysis of nano-plates with circular cutout based on 3D strain gradient theory. Compos. Struct. 205, 69–85 (2018)

    Article  Google Scholar 

  9. S. Hassanpour, F. Mehralian, R.D. Firouz-Abadi, M.R. Borhan-Panah, M. Rahmanian, Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory. Meccanica 54(1–2), 299–310 (2019)

    Article  MathSciNet  Google Scholar 

  10. S.A. Mirkalantari, M. Hashemian, S.A. Eftekhari, D. Toghraie, Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects. Phys. B Condens. Matter 519, 1–14 (2017)

    Article  ADS  Google Scholar 

  11. A. Jamalpoor, M. Hosseini, Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos. Part B Eng. 75, 53–64 (2015)

    Article  Google Scholar 

  12. B. Babu, B.P. Patel, Analytical solution for strain gradient elastic Kirchhoff rectangular plates under transverse static loading. Eur. J. Mech. A/Solids 73, 101–111 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Wang, S. Huang, J. Zhao, S. Zhou, Reconsiderations on boundary conditions of Kirchhoff micro-plate model based on a strain gradient elasticity theory. Appl. Math. Model. 40(15–16), 7303–7317 (2016)

    Article  MathSciNet  Google Scholar 

  14. K.A. Lazopoulos, On the gradient strain elasticity theory of plates. Eur. J. Mech.-A/Solids 23(5), 843–852 (2004)

  15. B. Zhang, Y. He, D. Liu, J. Lei, L. Shen, L. Wang, A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos. Part B Eng. 79, 553–580 (2015)

    Article  Google Scholar 

  16. S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013)

    Article  Google Scholar 

  17. N. Auffray, H. Le Quang, Q.C. He, Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Polizzotto, Anisotropy in strain gradient elasticity: simplified models with different forms of internal length and moduli tensors. Eur. J. Mech.-A/Solids 71, 51–63 (2018)

  19. F. Mehralian, Y.T. Beni, M.K. Zeverdejani, Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Phys. B Condens. Matter 514, 61–69 (2017)

    Article  ADS  Google Scholar 

  20. F. Mehralian, Y.T. Beni, M.K. Zeverdejani, Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Phys. B Condens. Matter 521, 102–111 (2017)

    Article  ADS  Google Scholar 

  21. H.M. Shodja, A. Zaheri, A. Tehranchi, Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mech. Mater. 61, 73–78 (2013)

    Article  Google Scholar 

  22. C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003)

    Article  Google Scholar 

  23. R.D. Firouz-Abadi, H. Moshrefzadeh-Sany, H. Mohammadkhani, M. Sarmadi, A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet. Solid State Commun. 225, 12–16 (2016)

    Article  ADS  Google Scholar 

  24. C. Davini, A. Favata, R. Paroni, The Gaussian stiffness of graphene deduced from a continuum model based on molecular dynamics potentials. J. Mech. Phys. Solids 104, 96–114 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Savvas, G. Stefanou, Determination of random material properties of graphene sheets with different types of defects. Compos. Part B Eng. 143, 47–54 (2018)

    Article  Google Scholar 

  26. S.N. Korobeynikov, V.V. Alyokhin, B.D. Annin, A.V. Babichev, Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20(7), 836–870 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Firouzabadi.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendices

Appendix A

$$\begin{aligned} \pmb {\mathrm {A^{(11)}}}=\begin{bmatrix} a_{11} &{}\quad a_{12} &{}\quad a_{13} &{}\quad a_{14} &{}\quad a_{15}\\ &{}\quad a_{22} &{}\quad -a_{13}+\sqrt{2}\,a_3 &{}\quad a_1 &{}\quad a_2\\ &{}\quad &{}\quad -a_{12}+a^*_3 &{} \quad a_{34} &{}\quad a_{35}\\ &{}\quad &{}\quad &{}\quad a_{44} &{}\quad a_{45}\\ &{}\quad &{}\quad &{}\quad &{}\quad a_{55} \end{bmatrix} \end{aligned}$$
(23)

with

\(a_1=a_{14}-\sqrt{2}\,a_{34},\, a_2=a_{15}-\sqrt{2}\,a_{35}, \, a_3=\frac{a_{11}-a_{22}}{2}, \, a^*_3=\frac{a_{11}+a_{22}}{2}\)

$$\begin{aligned} \pmb {\mathrm {A_c}}= & {} \begin{bmatrix} 1 &{}\quad -1 &{}\quad -\sqrt{2} &{}\quad 0 &{}\quad 0\\ &{}\quad 1 &{}\quad \sqrt{2} &{}\quad 0 &{}\quad 0\\ &{} \quad &{}\quad 2 &{}\quad 0 &{}\quad 0\\ &{} \quad &{}\quad &{}\quad 0 &{}\quad 0\\ &{}\quad &{} \quad &{}\quad 0 &{}\quad 0 \end{bmatrix} \end{aligned}$$
(24)
$$\begin{aligned} \pmb {\mathrm {D^{(4)}}}= & {} \begin{bmatrix} d_{11} &{} \quad d_{12} &{}\quad -d_{12}\\ d_{11} &{}\quad -d_{12} &{}\quad d_{12}\\ 0 &{}\quad -\sqrt{2}\,d_{12} &{}\quad \sqrt{2}\,d_{12}\\ d_{41} &{}\quad 0 &{}\quad 0\\ d_{51} &{}\quad 0 &{}\quad 0 \end{bmatrix} \end{aligned}$$
(25)
$$\begin{aligned} \pmb {\mathrm {F^{(8)}}}= & {} \begin{bmatrix} f_{11}&{} f_{12} &{} f_{13} &{} f_{14} &{} f_{15}\\ -f_{11}&{} -f_{12}+\beta _1 &{} f_{23} &{} -f_{12}+\beta _1 &{} -f_{15}-2\beta _2\\ -\sqrt{2}\,f_{11}&{} -\sqrt{2}\,\left( f_{12}-\frac{3\beta _1}{2}\right) &{} -\sqrt{2}\,(f_{15}+\beta _2) &{} -\sqrt{2}\,\left( f_{12}-\frac{\beta _1}{2}\right) &{} -\sqrt{2}\,(f_{13}-\beta _2)\\ 0 &{} 0 &{} f_{43} &{} 0 &{} -f_{43}\\ 0 &{} 0 &{} f_{53} &{} 0 &{} -f_{53} \end{bmatrix} \nonumber \\\end{aligned}$$
(26)
$$\begin{aligned} \pmb {\mathrm {H^{(6)}}}= & {} \begin{bmatrix} h_{11}&{}\quad h_{12} &{}\quad h_{13} &{}\quad h_{12} &{} \quad h_{13} \\ &{}\quad h_{22} &{}\quad h_{23} &{}\quad h_{22} &{}\quad h_{23}\\ &{} \quad &{}\quad h_{33} &{}\quad h_{23} &{}\quad h_{33}\\ &{}\quad &{}\quad &{}\quad h_{22} &{}\quad h_{23}\\ &{}\quad &{}\quad &{}\quad &{}\quad h_{33} \end{bmatrix} \end{aligned}$$
(27)
$$\begin{aligned} \pmb {\mathrm {J^{(4)}}}= & {} \begin{bmatrix} j_{11} &{}\quad j_{12} &{} \quad j_{12}\\ &{}\quad j_{22} &{}\quad j_{23}\\ &{}\quad &{}\quad j_{22} \end{bmatrix} \end{aligned}$$
(28)
$$\begin{aligned} \pmb {\mathrm {f\left( F^{(8)}\right) }}= & {} \begin{bmatrix} \sqrt{2}\,\alpha &{}\quad \beta _2 &{}\quad -2\beta _3-\beta _2\\ 0 &{}\quad \beta _2 &{}\quad 3\beta _2-2\beta _3\\ \alpha &{}\quad -2\sqrt{2}\,(\beta _2-\beta _3) &{}\quad 0 \\ 0 &{}\quad f_{43} &{}\quad f_{43} \\ 0 &{}\quad f_{53} &{}\quad f_{53} \end{bmatrix} \end{aligned}$$
(29)
$$\begin{aligned} \pmb {\mathrm {f\left( D^{(4)}\right) }}= & {} \begin{bmatrix} 0 &{}\quad \frac{\sqrt{2}}{2}\,d_{11} &{}\quad 0 &{}\quad -\frac{\sqrt{2}}{2}\,d_{11} &{} \quad 0\\ 0 &{}\quad \frac{\sqrt{2}}{2}\,d_{11} &{} \quad 0 &{}\quad -\frac{\sqrt{2}}{2}\,d_{11} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{} \quad \frac{\sqrt{2}}{2}\,d_{41} &{}\quad 0 &{}\quad -\frac{\sqrt{2}}{2}\,d_{41} &{}\quad 0\\ 0 &{}\quad \frac{\sqrt{2}}{2}\,d_{51} &{} \quad 0 &{}\quad -\frac{\sqrt{2}}{2}\,d_{51} &{}\quad 0 \end{bmatrix} \end{aligned}$$
(30)
$$\begin{aligned} \pmb {\mathrm {f\left( J^{(4)}\right) }}= & {} \begin{bmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ &{}\quad 0 &{}\quad 0 &{} -j_{11} &{}\quad -\sqrt{2}\,j_{12}\\ &{} \quad &{} \quad 0 &{} \quad -\sqrt{2}\,j_{12} &{}\quad -(j_{22}+j_{23})\\ &{}\quad &{}\quad &{}\quad 0 &{} \quad 0\\ &{} \quad &{}\quad &{} \quad &{}\quad 0 \end{bmatrix} \end{aligned}$$
(31)

with \(\beta _1=\frac{f_{12}-f_{14}}{2},\,\beta _2=\frac{f_{13}+f_{23}}{2},\,\beta _3=\frac{f_{13}-f_{15}}{2}\)

Appendix B

$$\begin{aligned} u= & {} -zw_{,x},\,\,\,v = -zw_{,y},\,\,\,w = w \end{aligned}$$
(32)
$$\begin{aligned} \varepsilon _{xx}= & {} -zw_{,xx},\,\,\,\varepsilon _{yy}=-zw_{,yy},\,\,\,\varepsilon _{xy}=-zw_{,xy} \end{aligned}$$
(33)
$$\begin{aligned} \eta _{xxx}= & {} \varepsilon _{xx,x}=-zw_{,xxx},\,\,\,\eta _{xxy}=\varepsilon _{xx,y}=-zw_{,xxy},\,\,\,\eta _{xyy}=\varepsilon _{xy,y}= -zw_{,xyy}\nonumber \\ \eta _{yyy}= & {} \varepsilon _{yy,y}= -zw_{,yyy},\,\,\,\eta _{yxx}=\varepsilon _{xy,x}=-zw_{,xxy},\,\,\,\eta _{yyx}=\varepsilon _{yy,x}=-zw_{,xyy}\nonumber \\ \eta _{xxz}= & {} -w_{,xx},\,\,\,\eta _{yyz}=-w_{,yy},\,\,\,\eta _{xyz}=-w_{,xy} \end{aligned}$$
(34)

Appendix C

$$\begin{aligned} M_{xx}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} (z\sigma _{xx}+\tau _{xxz})\,dz= \frac{h^3}{12}\left( C_{11}w_{,xx}+C_{12}w_{,yy})+h(h_{22}w_{,xx}+(h_{22}-J_{11})w_{,yy}\right) \end{aligned}$$
(35)
$$\begin{aligned} M_{xy}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} 2(z\sigma _{xy}+\tau _{xyz})\,dz= \frac{h^3}{6}(C_{11}-C_{12})w_{,xy}+2hJ_{11}w_{,xy} \end{aligned}$$
(36)
$$\begin{aligned} M_{yy}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} (z\sigma _{yy}+\tau _{yyz})\,dz= \frac{h^3}{12}(C_{12}w_{,xx}+C_{11}w_{,yy})+h((h_{22}-J_{11})w_{,xx}+h_{22}w_{,yy})\end{aligned}$$
(37)
$$\begin{aligned} Y_{xxx}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} (\tau _{xxx})\,zdz= \frac{h^3}{12}\left( (\eta +a_{11})w_{,xxx}+\left( -3\eta +a_{12}+\sqrt{2}a_{13}\right) w_{,xyy}\right) \end{aligned}$$
(38)
$$\begin{aligned} Y_{xxy}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} (2\tau _{xyx}+\tau _{xxy})\,zdz= \frac{h^3}{12}\left( -\left( 2\sqrt{2}a_{13}-3a_{11}+2a_{12}\right) w_{,xxy}\nonumber \right. \\&\left. \quad +\left( a_{12}+\sqrt{2}a_{13}\right) w_{,yyy}\right) \end{aligned}$$
(39)
$$\begin{aligned} Y_{xyy}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} (2\tau _{xyy}+\tau _{yyx})\,zdz\nonumber \\&= -\frac{h^3}{12}\left( \left( 3\eta -a_{12}-\sqrt{2}a_{13}\right) w_{,xxx}+\left( -9\eta -3a_{11}+2a_{12}+2\sqrt{2}a_{13}\right) w_{,xyy}\right) \end{aligned}$$
(40)
$$\begin{aligned} Y_{yyy}&= -\int _{-\frac{h}{2}}^{\frac{h}{2}} \tau _{yyy}\,zdz= \frac{h^3}{12}\left( \left( \sqrt{2}a_{13}+a_{12}\right) w_{,xxy}+a_{11}w_{,yyy}\right) \end{aligned}$$
(41)

Appendix D

$$\begin{aligned}&M_{xx,xx}+M_{xy,xy}+M_{yy,yy}-Y_{xxx,xxx}-Y_{xxy,xxy}-Y_{xyy,xyy}-Y_{yyy,yyy}\nonumber \\&\quad -\rho h\, \ddot{w}=0 \end{aligned}$$
(42)
$$\begin{aligned}&(M_{xx,x}+M_{xy,y}-Y_{xxx,xx}-Y_{xxy,xy}-Y_{xyy,yy})\,\delta w\mid _{x=0,{\bar{a}}}=0 \nonumber \\&(M_{xx}-Y_{xxx,x}-Y_{xxy,y})\,\delta w_{,x}\mid _{x=0,{\bar{a}}}=0,\,\,\,\,(Y_{xxx})\,\delta w_{,xx}\mid _{x=0,{\bar{a}}}=0 \nonumber \\&(M_{xy,x}+M_{yy,y}-Y_{yyy,yy}-Y_{xyy,xy}-Y_{xxy,xx})\,\delta w\mid _{y=0,{\bar{b}}}=0 \nonumber \\&(M_{yy}-Y_{yyy,y}-Y_{xyy,x})\,\delta w_{,y}\mid _{y=0,{\bar{b}}}=0,\,\,\,\,(Y_{yyy})\,\delta w_{,yy}\mid _{y=0,{\bar{b}}}=0 \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehralian, F., Firouzabadi, R.D. A comprehensive continuum model for graphene in the framework of first strain gradient theory. Eur. Phys. J. Plus 136, 777 (2021). https://doi.org/10.1140/epjp/s13360-021-01722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01722-3

Navigation