Skip to main content
Log in

Martingale Structure for General Thermodynamic Functionals of Diffusion Processes Under Second-Order Averaging

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Novel hidden thermodynamic structures have recently been uncovered during the investigation of nonequilibrium thermodynamics for multiscale stochastic processes. Here we reveal the martingale structure for a general thermodynamic functional of inhomogeneous singularly perturbed diffusion processes under second-order averaging, where a general thermodynamic functional is defined as the logarithmic Radon–Nykodim derivative between the laws of the original process and a comparable process (forward case) or its time reversal (backward case). In the forward case, we prove that the regular and anomalous parts of a thermodynamic functional are orthogonal martingales. In the backward case, while the regular part may not be a martingale, we prove that the anomalous part is still a martingale. With the aid of the martingale structure, we prove the integral fluctuation theorem satisfied by the regular and anomalous parts of a general thermodynamic functional. Further extensions and applications to stochastic thermodynamics are also discussed, including the martingale structure and fluctuation theorems for the regular and anomalous parts of entropy production and housekeeping heat in the absence or presence of odd variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarzynski, C.: Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011)

    Article  ADS  Google Scholar 

  2. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  3. Van den Broeck, C., Esposito, M.: Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015)

    Article  ADS  Google Scholar 

  4. Esposito, M., Van den Broeck, C.: Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Esposito, M., Van den Broeck, C.: Three faces of the second law. I. Master equation formulation. Phys. Rev. E 82, 011143 (2010)

    Article  ADS  Google Scholar 

  6. Ge, H., Qian, H.: Physical origins of entropy production, free energy dissipation, and their mathematical representations. Phys. Rev. E 81, 051133 (2010)

    Article  ADS  Google Scholar 

  7. Jiang, D.-Q., Qian, M., Qian, M.-P.: Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  8. Zhang, X.-J., Qian, H., Qian, M.: Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys. Rep. 510, 1–86 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hong, L., Jia, C., Zhu, Y., Yong, W.-A.: Novel dissipative properties of the master equation. J. Math. Phys. 57, 103303 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Andrieux, D., Gaspard, P.: Fluctuation theorem for currents and Schnakenberg network theory. J. Stat. Phys. 127, 107–131 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jia, C., Jiang, D.-Q., Qian, M.-P.: Cycle symmetries and circulation fluctuations for discrete-time and continuous-time Markov chains. Ann. Appl. Probab. 26, 2454–2493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, H., Jia, C., Jiang, D.-Q.: Cycle symmetry, limit theorems, and fluctuation theorems for diffusion processes on the circle. Stoch. Proc. Appl. 127, 1897–1925 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, D.J., Cohen, E.G., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  MATH  Google Scholar 

  14. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  16. Sekimoto, K.: Stochastic Energetics, vol. 799. Springer, Berlin (2010)

    MATH  Google Scholar 

  17. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 31, 3719 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  19. Searles, D.J., Evans, D.J.: Fluctuation theorem for stochastic systems. Phys. Rev. E 60, 159 (1999)

    Article  ADS  Google Scholar 

  20. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hatano, T., Sasa, S.-I.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  22. Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  23. Ritort, F.: Nonequilibrium fluctuations in small systems: From physics to biology. Adv. Chem. Phys. 137, 31 (2008)

    Google Scholar 

  24. Bonetto, F., Gallavotti, G., Garrido, P.: Chaotic principle: an experimental test. Physica D Nonlinear Phenom. 105, 226–252 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hendrix, D., Jarzynski, C.: A fast growth method of computing free energy differences. J. Chem. Phys. 114, 5974–5981 (2001)

    Article  ADS  Google Scholar 

  26. Van Zon, R., Cohen, E.: Extension of the fluctuation theorem. Phys. Rev. Lett. 91, 110601 (2003)

    Article  Google Scholar 

  27. Giuliani, A., Zamponi, F., Gallavotti, G.: Fluctuation relation beyond linear response theory. J. Stat. Phys. 119, 909–944 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Williams, S.R., Searles, D.J., Evans, D.J.: Numerical study of the steady state fluctuation relations far from equilibrium. J. Chem. Phys. 124, 194102 (2006)

    Article  ADS  Google Scholar 

  29. Ciliberto, S., Laroche, C.: An experimental test of the Gallavotti–Cohen fluctuation theorem. J. Phys. IV 8, Pr6–215 (1998)

    Google Scholar 

  30. Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)

    Article  ADS  Google Scholar 

  31. Garnier, N., Ciliberto, S.: Nonequilibrium fluctuations in a resistor. Phys. Rev. E 71, 060101 (2005)

    Article  ADS  Google Scholar 

  32. Collin, D., et al.: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231 (2005)

    Article  ADS  Google Scholar 

  33. Imparato, A., Peliti, L., Pesce, G., Rusciano, G., Sasso, A.: Work and heat probability distribution of an optically driven Brownian particle: theory and experiments. Phys. Rev. E 76, 050101 (2007)

    Article  ADS  Google Scholar 

  34. Maes, C.: On the origin and the use of fluctuation relations for the entropy. Sémin. Poincaré 2, 29–62 (2003)

    Google Scholar 

  35. Chernyak, V.Y., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. Theory Exp. 2006, P08001 (2006)

    Article  MATH  Google Scholar 

  36. Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Chetrite, R., Gupta, S.: Two refreshing views of fluctuation theorems through kinematics elements and exponential martingale. J. Stat. Phys. 143, 543 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Neri, I., Roldán, É., Jülicher, F.: Statistics of infima and stopping times of entropy production and applications to active molecular processes. Phys. Rev. X 7, 011019 (2017)

    Google Scholar 

  39. Pigolotti, S., Neri, I., Roldán, É., Jülicher, F.: Generic properties of stochastic entropy production. Phys. Rev. Lett. 119, 140604 (2017)

    Article  ADS  Google Scholar 

  40. Chetrite, R., Gupta, S., Neri, I., Roldán, É.: Martingale theory for housekeeping heat. Europhys. Lett. 124, 60006 (2019)

    Article  ADS  Google Scholar 

  41. Singh, S., et al.: Records of entropy production in an electronic double dot. arXiv preprint (2017). arXiv:1712.01693

  42. Pavliotis, G.: Stochastic Processes and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  43. Jia, C., Grima, R.: Frequency domain analysis of fluctuations of mRNA and protein copy numbers within a cell lineage: theory and experimental validation. Phys. Rev. X 11, 021032 (2021)

    Google Scholar 

  44. Pavliotis, G., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2008)

    MATH  Google Scholar 

  45. Pigolotti, S., Vulpiani, A.: Coarse graining of master equations with fast and slow states. J. Chem. Phys. 128, 154114 (2008)

    Article  ADS  Google Scholar 

  46. Jia, C.: Simplification of irreversible Markov chains by removal of states with fast leaving rates. J. Theor. Biol. 400, 129–137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Jia, C.: Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts. Phys. Rev. E 96, 032402 (2017)

    Article  ADS  Google Scholar 

  48. Khasminskii, R.Z., Yin, G.: On transition densities of singularly perturbed diffusions with fast and slow components. SIAM J. Appl. Math. 56, 1794–1819 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Khasminskii, R.Z., Yin, G.: On averaging principles: an asymptotic expansion approach. SIAM. J. Math. Anal. 35, 1534–1560 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Khasminskii, R.: Stochastic Stability of Differential Equations, vol. 66. Springer, Berlin (2011)

    Google Scholar 

  51. Jia, C.: Reduction of Markov chains with two-time-scale state transitions. Stochastics 88, 73–105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jia, C., Zhang, M.Q., Qian, H.: Emergent Lévy behavior in single-cell stochastic gene expression. Phys. Rev. E 96, 040402 (2017)

    Article  ADS  Google Scholar 

  53. Jia, C., Yin, G.G., Zhang, M.Q., et al.: Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback. Phys. Rev. E 100, 052406 (2019)

    Article  ADS  Google Scholar 

  54. Jia, C., Grima, R.: Small protein number effects in stochastic models of autoregulated bursty gene expression. J. Chem. Phys. 152, 084115 (2020)

    Article  ADS  Google Scholar 

  55. Jia, C., Grima, R.: Dynamical phase diagram of an auto-regulating gene in fast switching conditions. J. Chem. Phys. 152, 174110 (2020)

    Article  ADS  Google Scholar 

  56. Jia, C.: Kinetic foundation of the zero-inflated negative binomial model for single-cell RNA sequencing data. SIAM J. Appl. Math. 80, 1336–1355 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Spinney, R.E., Ford, I.J.: Entropy production in full phase space for continuous stochastic dynamics. Phys. Rev. E 85, 051113 (2012)

    Article  ADS  Google Scholar 

  58. Lee, H.K., Kwon, C., Park, H.: Fluctuation theorems and entropy production with odd-parity variables. Phys. Rev. Lett. 110, 050602 (2013)

    Article  ADS  Google Scholar 

  59. Ge, H.: Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes. Phys. Rev. E 89, 022127 (2014)

    Article  ADS  Google Scholar 

  60. Pardoux, E., Veretennikov, Y., et al.: On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 1061–1085 (2001)

    MathSciNet  MATH  Google Scholar 

  61. Pardoux, E., Veretennikov, A.Y., et al.: On Poisson equation and diffusion approximation 2. Ann. Probab. 31, 1166–1192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Khasminskii, R., Yin, G.: Limit behavior of two-time-scale diffusions revisited. J. Differ. Equ. 212, 85–113 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Esposito, M.: Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  64. Kawaguchi, K., Nakayama, Y.: Fluctuation theorem for hidden entropy production. Phys. Rev. E 88, 022147 (2013)

    Article  ADS  Google Scholar 

  65. Puglisi, A., Pigolotti, S., Rondoni, L., Vulpiani, A.: Entropy production and coarse graining in Markov processes. J. Stat. Mech. Theory Exp. 2010, P05015 (2010)

    Article  MATH  Google Scholar 

  66. Rahav, S., Jarzynski, C.: Fluctuation relations and coarse-graining. J. Stat. Mech. Theory Exp. 2007, P09012 (2007)

    Article  Google Scholar 

  67. Santillán, M., Qian, H.: Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys. Rev. E 83, 041130 (2011)

    Article  ADS  Google Scholar 

  68. Nakayama, Y., Kawaguchi, K.: Invariance of steady-state thermodynamics between different scales of description. Phys. Rev. E 91, 012115 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  69. Ford, I.J., Laker, Z.P., Charlesworth, H.J.: Stochastic entropy production arising from nonstationary thermal transport. Phys. Rev. E 92, 042108 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  70. Celani, A., Bo, S., Eichhorn, R., Aurell, E.: Anomalous thermodynamics at the microscale. Phys. Rev. Lett. 109, 260603 (2012)

    Article  ADS  Google Scholar 

  71. Bo, S., Celani, A.: Entropy production in stochastic systems with fast and slow time-scales. J. Stat. Phys. 154, 1325–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Lan, Y., Aurell, E.: The stochastic thermodynamics of a rotating Brownian particle in a gradient flow. Sci. Rep. 5, 12266 (2015)

    Article  ADS  Google Scholar 

  73. Jia, C.: Model simplification and loss of irreversibility. Phys. Rev. E 93, 052149 (2016)

    Article  ADS  Google Scholar 

  74. Marino, R., Eichhorn, R., Aurell, E.: Entropy production of a Brownian ellipsoid in the overdamped limit. Phys. Rev. E 93, 012132 (2016)

    Article  ADS  Google Scholar 

  75. Bo, S., Celani, A.: Multiple-scale stochastic processes: decimation, averaging and beyond. Phys. Rep. 670, 1–59 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Birrell, J.: Entropy anomaly in Langevin–Kramers dynamics with a temperature gradient, matrix drag, and magnetic field. J. Stat. Phys. 173, 1549–1586 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Hu, W., Spiliopoulos, K., et al.: Hypoelliptic multiscale Langevin diffusions: large deviations, invariant measures and small mass asymptotics. Electron. J. Probab. 22, 1–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Speck, T., Seifert, U.: Integral fluctuation theorem for the housekeeping heat. J. Phys. A Math. Gen. 38, L581 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Herzog, D.P., Mattingly, J.C.: A practical criterion for positivity of transition densities. Nonlinearity 28, 2823 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  81. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  82. Jia, C., Zhao, G.: Moderate maximal inequalities for the Ornstein–Uhlenbeck process. Proc. Am. Math. Soc. 148, 3607–3615 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  83. Chen, X., Jia, C.: Identification of unstable fixed points for randomly perturbed dynamical systems with multistability. J. Math. Anal. Appl. 446, 521–545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge George G. Yin and Wenqing Hu for valuable comments and stimulating discussions. H. Ge is supported by NSFC (No. 11971037 and 11622101). C. Jia acknowledges support from the NSAF grant in National Natural Science Foundation of China (NSFC) with Grant No. U1930402.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Ge or Chen Jia.

Additional information

Communicated by Jorge Kurchan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An Class of Processes Satisfying Assumption 4.7

Appendix A: An Class of Processes Satisfying Assumption 4.7

Clearly, Assumption 4.7 is automatically satisfied if the original process is defined on a compact set. However, in many cases, to guarantee this assumption to hold, we only need to require that the fast component is defined on a compact set. To give such an example, we consider the case where the fast process \(Y^\epsilon \) is defined on a compact subset \(K\subset {\mathbb {R}}^m\) and the slow process \(X^\epsilon \) is a one-dimensional diffusion defined on the entire space. Moreover, we assume that \(X^\epsilon _0 = 0\) and the drift and diffusion coefficients of the slow process satisfy \(f = 0\), \(\sigma = 1\), and

$$\begin{aligned} -\alpha x \le b(x,y,t)\le 0,\quad x\in {\mathbb {R}},\;y\in K,\;t\in [0,T], \end{aligned}$$

where \(\alpha >0\) is a constant. Under these conditions, it follows from the Ikeda–Watanabe comparison theorem [81, p. 437, Theorem 1.1] that for any \(\epsilon >0\), the slow process can be controlled by

$$\begin{aligned} U_t \le X^\epsilon _t \le W_t,\;\;\;\;t\in [0,T], \end{aligned}$$
(21)

where \(U_t\) is an Ornstein-Uhlenbeck process satisfying

$$\begin{aligned} dU_t = -\alpha U_t+dW_t,\;\;\;U_0 = 0. \end{aligned}$$

Since \(W_t\) is a continuous martingale, it follows from the Burkholder–Davis–Gundy inequality that for any \(p>0\), there exists a constant \(D_p>0\) independent of T such that

$$\begin{aligned} {\mathbb {E}}\big [\sup _{t\le T}|W_t|^p\big ] \le D_pT^{p/2}. \end{aligned}$$

Recently, it has been proved that the Ornstein-Uhlenbeck process satisfies the following \(L^p\) maximal inequality [82, 83]: for any \(p>0\), there exists a constant \(C_p>0\) independent of \(\alpha \), \(\beta \), and T such that

$$\begin{aligned} {\mathbb {E}}\big [\sup _{t\le T}|U_t|^p\big ] \le \frac{C_p}{\alpha ^{p/2}}\log ^{p/2}(1+\alpha T). \end{aligned}$$

For any \(M>0\), it then follows from Chebychev’s inequality that

$$\begin{aligned}&{\mathbb {P}}\big (\sup _{t\le T}|W_t|>M\big ) \le \frac{1}{M^p}{\mathbb {E}}\big [\sup _{t\le T}|W_t|^p\big ] \le \frac{D_p}{M^p}T^{p/2},\\&{\mathbb {P}}\big (\sup _{t\le T}|U_t|>M\big ) \le \frac{1}{M^p}{\mathbb {E}}\big [\sup _{t\le T}|U_t|^p\big ] \le \frac{C_p}{M^p\alpha ^{p/2}}\log ^{p/2}(1+\alpha T). \end{aligned}$$

Thus for any \(\delta >0\), when M is sufficiently large, it follows from (21) that

$$\begin{aligned} {\mathbb {P}}\big (\inf _{\epsilon>0}\tau ^\epsilon _{B_0(3M)}\ge T\big )\ge & {} {\mathbb {P}}\big (\sup _{t\le T}|X^\epsilon _t|\le 2M\;\text {for all}\;\epsilon>0\big )\\\ge & {} {\mathbb {P}}\big (\sup _{t\le T}|W_t|+\sup _{t\le T}|U_t|\le 2M\big )\\= & {} 1-{\mathbb {P}}\big (\sup _{t\le T}|W_t|+\sup _{t\le T}|U_t|>2M\big )\\\ge & {} 1-{\mathbb {P}}\big (\sup _{t\le T}|W_t|>M\big ) -{\mathbb {P}}\big (\sup _{t\le T}|U_t|>M\big ) \ge 1-\delta , \end{aligned}$$

where \(B_0(3M)\subset {\mathbb {R}}^{m+1}\) is the closed ball centered at zero with radius 3M. Therefore, Assumption 4.7 is satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Jia, C. & Jin, X. Martingale Structure for General Thermodynamic Functionals of Diffusion Processes Under Second-Order Averaging. J Stat Phys 184, 17 (2021). https://doi.org/10.1007/s10955-021-02798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02798-y

Keywords

Navigation