Skip to main content
Log in

Projected Gradient Method Combined with Homotopy Techniques for Volume-Measure-Preserving Optimal Mass Transportation Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Optimal mass transportation has been widely applied in various fields, such as data compression, generative adversarial networks, and image processing. In this paper, we adopt the projected gradient method, combined with the homotopy technique, to find a minimal volume-measure-preserving solution for a 3-manifold optimal mass transportation problem. The proposed projected gradient method is shown to be sublinearly convergent at a rate of O(1/k). Several numerical experiments indicate that our algorithms can significantly reduce transportation costs. Some applications of the optimal mass transportation maps—to deformations and canonical normalizations between brains and solid balls—are demonstrated to show the robustness of our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ALICE. http://alice.loria.fr/ (2016)

  2. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv:1811.02629 (2018)

  3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bonnotte, N.: From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45(1), 64–87 (2013). https://doi.org/10.1137/120874850

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991). https://doi.org/10.1002/cpa.3160440402

    Article  MathSciNet  MATH  Google Scholar 

  6. Brent, R.P.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  7. CMG: Combinatorial Multigrid. http://www.cs.cmu.edu/~jkoutis/cmg.html (2021)

  8. David Xianfeng Gu’s Home Page. http://www3.cs.stonybrook.edu/~gu/ (2017)

  9. Digital Shape Workbench-Shape Repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/ (2016)

  10. Engwirda, D., Ivers, D.: Face-centred voronoi refinement for surface mesh generation. Procedia Eng. 82, 8–20 (2014). https://doi.org/10.1016/j.proeng.2014.10.364. 23rd International Meshing Roundtable (IMR23)

  11. Engwirda, D., Ivers, D.: Off-centre steiner points for delaunay-refinement on curved surfaces. Comput.-Aided Des. 72, 157–171 (2016). https://doi.org/10.1016/j.cad.2015.10.007. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation

  12. Engwirda, D.: Conforming restricted delaunay mesh generation for piecewise smooth complexes. Procedia Eng. 163, 84–96 (2016). https://doi.org/10.1016/j.proeng.2016.11.024. 25th International Meshing Roundtable

  13. Engwirda, D.: Locally optimal Delaunay-refinement and optimisation-based mesh generation. PhD thesis, University of Sydney http://hdl.handle.net/2123/13148 (2014)

  14. Engwirda, D.: Voronoi-based point-placement for three-dimensional delaunay-refinement. Procedia Eng. 124, 330–342 (2015). https://doi.org/10.1016/j.proeng.2015.10.143. 24th International Meshing Roundtable

  15. Fang, Q., Boas, D.A.: Tetrahedral mesh generation from volumetric binary and grayscale images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1142–1145 (2009). https://doi.org/10.1109/ISBI.2009.5193259

  16. Garg, V., Jaakkola, T.: Solving graph compression via optimal transport. In: Advances in Neural Information Processing Systems 32, pp. 8014–8025. Curran Associates, Inc (2019). http://papers.nips.cc/paper/9014-solving-graph-compression-via-optimal-transport.pdf

  17. Gu, X., Luo, F., Sun, J., Yau, S.T.: Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge–Ampère equations. Asian J. Math. 20(2), 383–398 (2016). https://doi.org/10.4310/AJM.2016.v20.n2.a7

    Article  MathSciNet  MATH  Google Scholar 

  18. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004). https://doi.org/10.1023/B:VISI.0000036836.66311.97

    Article  Google Scholar 

  19. Iso2Mesh. http://iso2mesh.sourceforge.net (2018)

  20. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk 3(2), 225–226 (1948)

    Google Scholar 

  21. Lei, N., Su, K., Cui, L., Yau, S.T., Gu, X.D.: A geometric view of optimal transportation and generative model. Comput. Aided Geom. Des. 68, 1–21 (2019). https://doi.org/10.1016/j.cagd.2018.10.005

    Article  MathSciNet  MATH  Google Scholar 

  22. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Ç. Demiralp, Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  23. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  24. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  Google Scholar 

  25. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. 1–2. Springer, Berlin (1998)

    MATH  Google Scholar 

  26. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)

  27. Su, Z., Wang, Y., Shi, R., Zeng, W., Sun, J., Luo, F., Gu, X.: Optimal mass transport for shape matching and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2246–2259 (2015). https://doi.org/10.1109/TPAMI.2015.2408346

    Article  Google Scholar 

  28. Su, K., Chen, W., Lei, N., Zhang, J., Qian, K., Gu, X.: Volume preserving mesh parameterization based on optimal mass transportation. Comput. Aided Des. 82, 42–56 (2017). https://doi.org/10.1016/j.cad.2016.05.020

    Article  MathSciNet  Google Scholar 

  29. The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/ (2016)

  30. Tran, A.P., Fang, Q.: Generating high quality tetrahedral meshes of the human head and applications in fnirs. In: Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), pp. JTu3A.52. Optical Society of America (2018). https://doi.org/10.1364/TRANSLATIONAL.2018.JTu3A.52

  31. TurboSquid. http://www.turbosquid.com/ (2016)

  32. Villani, C.: The Wasserstein Distances, pp. 93–111. Springer, Berlin, HeidelbergBerlin, Heidelberg (2009)

    Google Scholar 

  33. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017). https://doi.org/10.1007/s10915-017-0414-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Yueh, M.H., Li, T., Lin, W.W., Yau, S.T.: A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J. Imag. Sci. 12(2), 1071–1098 (2019). https://doi.org/10.1137/18M1201184

    Article  MathSciNet  Google Scholar 

  35. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci. Comput. 78(3), 1353–1386 (2019). https://doi.org/10.1007/s10915-018-0822-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiexiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work by M.-H. Yueh, T.-M. Huang and W.-W. Lin was partially supported by Ministry of Science and Technology Grants 109-2115-M-003-010-MY2, 108-2115-M-003-012-MY2 and 106-2628-M-009-004, respectively. The work by T. Li was partially supported by National Natural Science Foundation of China (NSFC) Grant 11971105. The work by the authors was partially supported by the National Center for Theoretical Sciences (NCTS), the Nanjing Center for Applied Mathematics (NCAM), and the Shing-Tung Yau Center and the Big Data Computing Center of Southeast University.

Appendices

Area-Weighted Stretching Energy Minimization [35]

Let \({\mathcal {M}}\) be a simply connected tetrahedral mesh and \(\rho \) be a density function on \({\mathcal {M}}\). Let \(g:\partial {\mathcal {M}}\rightarrow {\mathbb {S}}^2\) be a piecewise affine map induced by \({\mathbf {g}}=[({\mathbf {g}}^1)^\top , ({\mathbf {g}}^2)^\top , ({\mathbf {g}}^3)^\top ]^\top \). We define the area-weighted stretching energy functional by

$$\begin{aligned} {\mathcal {E}}_{\mathbb {A}}(g) = \frac{1}{2} \sum _{s=1}^3 ({\mathbf {g}}^s)^\top L_{\mathbb {A}}(g) {\mathbf {g}}^s, \end{aligned}$$

where \(L_{\mathbb {A}}(g)\) is the area-weighted Laplacian matrix with

$$\begin{aligned} {[}L_{\mathbb {A}}(g)]_{i,j} = {\left\{ \begin{array}{ll} -w_{i,j}(g) \equiv -\frac{1}{2}\left( \frac{\cot \theta _{i,j}(g)}{\sigma _{g}([v_i,v_j,v_k])} + \frac{\cot \theta _{j,i}(g)}{\sigma _{g}([v_j,v_i,v_\ell ])}\right) &{} \text {if }[v_i,v_j]\in {\mathcal {E}}({\mathcal {M}}),\\ \sum _{\ell \ne i} w_{i,\ell }(g) &{} \text {if }j=i,\\ 0 &{} \text {otherwise} \end{array}\right. } \end{aligned}$$
(38)

in which \(\sigma _{g}(\alpha ) = \frac{\rho (\alpha ) |\alpha |}{|g(\alpha )|}\) is the stretching factor of g on the triangular face \(\alpha =[v_i,v_j,v_k]\) or \([v_j,v_i,v_\ell ]\), and \(\theta _{i,j}(g)\) and \(\theta _{j,i}(g)\) are two angles opposite to the edge \(g([v_i,v_j])\). We summarize area-weighted stretching energy minimization (ASEM) for the computation of spherical area-measure-preserving parameterizations below.

figure d

Proof of Lemmas

1.1 Proof of Lemma 1

(i) Let \({\mathbf {g}}_{\tau } = {\mathbf {g}}^{(k)} + \tau ({\mathbf {g}}^* - {\mathbf {g}}^{(k)})\) be the line segment between \({\mathbf {g}}^{(k)}\) and \({\mathbf {g}}^*\) for \(\tau \in [0,1]\). Then, we have

$$\begin{aligned}&\left\| {\mathbf {g}}^{(k+1)} - {\mathbf {g}}^{*} \right\| _2 \\&\quad = \left\| \mathrm {P}_{{\mathcal {C}}}(\overline{{\mathbf {g}}}^{(k)}) - \mathrm {P}_{{\mathcal {C}}}({\mathbf {g}}^{*}) \right\| _2 \\&\overset{(27)}{\le } \left\| \overline{{\mathbf {g}}}^{(k)} - {\mathbf {g}}^{*} \right\| _2 \overset{(24)}{=} \left\| {\mathbf {g}}^{(k)} - {\eta }_k \nabla c({\mathbf {g}}^{(k)}) - {\mathbf {g}}^* \right\| _2 \\&\quad = \left\| (I - {\eta }_k \int _0^1 \nabla ^2 c({\mathbf {g}}_\tau ) \,{\mathrm d}\tau ) ({\mathbf {g}}^{(k)} - {\mathbf {g}}^*) \right\| _2 ~\text {(Fundamental Theorem of Calculus)}\\&\quad \le \sup _{\tau \in [0,1]} \left\| I - {\eta }_k \int _0^1 \nabla ^2 c({\mathbf {g}}_\tau ) \,{\mathrm d}\tau \right\| _2 \left\| {\mathbf {g}}^{(k)} - {\mathbf {g}}^* \right\| _2 \\&\quad \le \left\| {\mathbf {g}}^{(k)} - {\mathbf {g}}^* \right\| _2 ~ \text {(from the convexity of }c(\cdot )\text { and }{\eta }_k L < 2). \end{aligned}$$

From property (26) and (24)–(25) with \({\mathbf {h}}={\mathbf {g}}^*\) or \({\mathbf {g}}^{(k)}\), we have

$$\begin{aligned}&\left( \mathrm {P}_{{\mathcal {C}}}(\overline{{\mathbf {g}}}^{(k)}) - \overline{{\mathbf {g}}}^{(k)} \right) ^\top \left( \mathrm {P}_{{\mathcal {C}}}(\overline{{\mathbf {g}}}^{(k)}) - {\mathbf {h}} \right) \\&\quad = \left( {\mathbf {g}}^{(k+1)} - ({\mathbf {g}}^{(k)} - {\eta }_k \nabla c({\mathbf {g}}^{(k)}))\right) ^\top \left( {\mathbf {g}}^{(k+1)}-{\mathbf {h}}\right) \\&\quad = {\eta }_k \left( \nabla c({\mathbf {g}}^{(k)}) - \frac{1}{{\eta }_k}({\mathbf {g}}^{(k)} - {\mathbf {g}}^{(k+1)}) \right) ^\top \left( {\mathbf {g}}^{(k+1)} - {\mathbf {h}} \right) \\&\quad \overset{(28)}{=} {\eta }_k \left( \nabla c({\mathbf {g}}^{(k)}) - d_{{\mathcal {C}}}({\mathbf {g}}^{(k)}) \right) ^\top \left( {\mathbf {g}}^{(k+1)} - {\mathbf {h}} \right) \le 0. \end{aligned}$$

\(\square \)

1.2 Proof of Lemma 2

For convenience, we now delete the superscript "k" and denote

$$\begin{aligned} {\mathbf {g}}:= & {} {\mathbf {g}}^{(k)}, ~~ {\mathbf {g}}^{+}:= {\mathbf {g}}^{(k+1)}, \end{aligned}$$
(39)
$$\begin{aligned} \overline{{\mathbf {g}}}:= & {} \overline{{\mathbf {g}}}^{(k)} = {\mathbf {g}}^{(k)} - {\eta }_k \nabla c({\mathbf {g}}^{(k)}) = {\mathbf {g}} - {\eta } \nabla c({\mathbf {g}}), \end{aligned}$$
(40)

and

$$\begin{aligned} {\mathbf {g}}^{+} = \mathrm {P}_{{\mathcal {C}}}(\overline{{\mathbf {g}}}), ~ d_{{\mathcal {C}}}({\mathbf {g}}) := \frac{1}{\eta }({\mathbf {g}} - {\mathbf {g}}^+). \end{aligned}$$
(41)

(i) From (39)–(41), it follows that

$$\begin{aligned} c({\mathbf {g}}^*) - c({\mathbf {g}}^+)&= c({\mathbf {g}}^*) - c({\mathbf {g}}) -(c({\mathbf {g}}^+)-c({\mathbf {g}}))\\&\ge \nabla c({\mathbf {g}})^\top ({\mathbf {g}}^* - {\mathbf {g}}) - \left( \nabla c({\mathbf {g}})^\top ({\mathbf {g}}^+-{\mathbf {g}})+\frac{L}{2}\Vert {\mathbf {g}}^+-{\mathbf {g}}\Vert _2^2\right) \\&\text {(From convexity and }L\text {-smoothness of }c(\cdot ))\\&= \nabla c({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}^+) - \frac{L}{2}\Vert {\mathbf {g}}^+-{\mathbf {g}}\Vert _2^2 \\&\ge d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}^+) - \frac{L}{2}\Vert {\mathbf {g}}^+-{\mathbf {g}}\Vert _2^2&\text {(Lemma } 1 \text { (ii))} \\&= d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}) + d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}-{\mathbf {g}}^+) - \frac{L}{2}\Vert {\mathbf {g}}^+-{\mathbf {g}}\Vert _2^2 \\&\overset{(41)}{=} d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}) + {\eta } \Vert d_{{\mathcal {C}}}({\mathbf {g}})\Vert _2^2 - \frac{L}{2}{\eta }^2 \Vert d_{{\mathcal {C}}}({\mathbf {g}})\Vert _2^2 \\&= d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}) + {\eta } \left( 1 - \frac{{\eta }L}{2} \right) \Vert d_{{\mathcal {C}}}({\mathbf {g}})\Vert _2^2. \end{aligned}$$

This implies that

$$\begin{aligned} c({\mathbf {g}}^*)-c({\mathbf {g}}^+) \ge d_{{\mathcal {C}}}({\mathbf {g}})^\top ({\mathbf {g}}^*-{\mathbf {g}}). \end{aligned}$$

From the Cauchy–Schwarz theorem and Lemma 1 (i), we have

$$\begin{aligned} \Vert d_{{\mathcal {C}}}({\mathbf {g}})\Vert _2 \ge \frac{c({\mathbf {g}}^+)-c({\mathbf {g}}^*)}{\Vert {\mathbf {g}}-{\mathbf {g}}^*\Vert _2} \ge \frac{c({\mathbf {g}}^+)-c({\mathbf {g}}^*)}{\Vert {\mathbf {g}}^{(0)}-{\mathbf {g}}^*\Vert _2}. \end{aligned}$$

(ii) Similar to the proof of (i), by setting \({\mathbf {g}}^* = {\mathbf {g}}\), we obtain

$$\begin{aligned} c({\mathbf {g}})&\ge c({\mathbf {g}}^+) + {\eta } \left( 1-\frac{{\eta } L}{2} \right) \Vert d_{\mathcal {C}}({\mathbf {g}})\Vert _2^2 \\&\ge c({\mathbf {g}}^+) + {\eta }_0 \left( 1-\frac{{\eta }_* L}{2} \right) \Vert d_{\mathcal {C}}({\mathbf {g}})\Vert _2^2 \\&= c({\mathbf {g}}^+) + \frac{1}{2q} \Vert d_{\mathcal {C}}({\mathbf {g}})\Vert _2^2. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yueh, MH., Huang, TM., Li, T. et al. Projected Gradient Method Combined with Homotopy Techniques for Volume-Measure-Preserving Optimal Mass Transportation Problems. J Sci Comput 88, 64 (2021). https://doi.org/10.1007/s10915-021-01583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01583-z

Keywords

Mathematics Subject Classification

Navigation