Skip to main content

Advertisement

Log in

Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a highly destructive insect pest of several crop plants and threatening global food security. The current Coupled Model Intercomparison Project phase 6 (CMIP6) data set was analysed to predict the potential worldwide distribution of FAW under present and future climate change scenarios in 2050 and 2070 under Shared Socioeconomic Pathway (SSP) 1-2.6 and SSP5-8.5 emission scenario with 19 bioclimatic variables through maximum entropy (MaxEnt) niche modelling. The MaxEnt model predicted the potential distribution of S. frugiperda with area under the receiver operator curve (AUC) values of 0.915 and 0.910 during training and testing, respectively. Annual precipitation, annual mean temperature and isothermality were the strongest predictors of S. frugiperda distribution with 42.6%, 22.4% and 10% contributions, respectively. The recent CMIP6 models predicted higher suitability of FAW in North America, Africa and Asia under future climatic conditions. Global suitability of FAW is predicted to increase by 4.49% and 8.33% under SSP1-2.6 and SSP5-8.5 scenarios, respectively, compared to that of current climate conditions. Multimodel ensemble predicted the highest risk of invasion and spread of FAW by 2050 and 2070 under SSP5-8.5 scenario. The predictions could be used to forecast the potential spread of FAW and combating outbreaks well in advance. Our results will be an important guide for researchers, policymakers and governments to devise suitable management strategies against this highly invasive pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available https://www.gbif.org and https://www.worldclim.org.

Code availability

Not applicable.

References

  • Andrews KL (1988) Latin american research on spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 71:630–653

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • CABI (2018) Invasive Species Compendium 2018. www.cab.org/isc/datasheet

  • Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K (2020) rgbif: Interface to the Global Biodiversity Information Facility API

  • Casmuz Augusto JML, Socias MG, Murúa MG, Prieto S, Medina S (2010) Revision de los hospederos del gusanocogollero del maiz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Soc Entomol Argent 69:209–231

    Google Scholar 

  • Chakraborty A, Joshi PK, Sachdeva K (2016) Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecol Eng 97:593–609. https://doi.org/10.1016/j.ecoleng.2016.10.006

    Article  Google Scholar 

  • Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno PG, Murphy ST, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S, Witt A (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28:196–201

    Article  Google Scholar 

  • Du Plessis H, Van den Berg J, Ota N, Kriticos D (2018) Spodoptera frugiperda. CSIRO-In-STePP Pest Geog

  • Early R, González-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40:25–50

    Article  Google Scholar 

  • EFSA PLH Panel (EFSA Panel on Plant Health), Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Day R, Early R, Hruska A, Nagoshi R, Gardi C, Mosbach-Schultz O, MacLeod A (2018) Scientific Opinion on the pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J 16(8):5351. https://doi.org/10.2903/j.efsa.2018.5351

    Article  CAS  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • FAO (2019) Briefing note on FAO actions on fall armyworm. http://www.fao.org/3/a-bs183e.pdf. Accessed on January 2020

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev. https://doi.org/10.5194/gmd-12-1443-2019

  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamo M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 11:1–9

    Article  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24(3):276–292. https://doi.org/10.1111/geb.1226

    Article  Google Scholar 

  • He LM, Ge SS, Chen YC, Wu QL, Jiang YY, Wu KM (2019) The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodoptera frugiperda. Plant Prot 45(5):18e26

    Google Scholar 

  • IPPC (2020) Detections of Spodoptera frugiperda (Fall Armyworm) on Mainland Australia. https://www.ippint/en/countries/australia/pestreports/2020/03/detections-of-spodoptera-frugiperda-fall-armyworm-on-mainland-australia. Accessed on 15 May 2021

  • Karuppaiah V, Sujayanad G (2012) Impact of climate change on population dynamics of insect pests. World J Agric Sci 8:240–246

    Google Scholar 

  • Kennedy GG, Storer NP (2000) Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu Rev Entomol 45:467–493

    Article  CAS  Google Scholar 

  • Liu T, Wang J, Hu X, Feng J (2020) Land-use change drives present and future distributions of fall army worm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Sci Total Environ 706:135872

    Article  CAS  Google Scholar 

  • Maruthadurai R, Ramesh R (2020) Occurrence damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 48:15–23

    Article  CAS  Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300

    Article  Google Scholar 

  • Murúa G, Molina-Ochoa J, Coviella C (2006) Population dynamics of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) and its parasitoids in northwestern Argentina. Fla Entomol 89:175–182

    Article  Google Scholar 

  • Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects, and diseases. Clim Change 43:711–727

    Article  CAS  Google Scholar 

  • Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2019) Maxent software for modeling species niches and distributions (version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climate change on agricultural insect pests. Agric for Meteorol 57:221–240. https://doi.org/10.1016/0168-1923(91)90088-8

    Article  Google Scholar 

  • Prasanna BM, Joseph E, Huesing RE, Virginia MP (eds) (2018) Fall armyworm in Africa: a guide for integrated pest management, 1st edn. CIMMYT, Mexico, CDMX

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J Agric Sci. https://doi.org/10.1017/S0021859617000314

    Article  Google Scholar 

  • Ramírez-Cabral NYZ, Medina-García G, Kumar L (2020) Increase of the number of broods of fall armyworm (Spodoptera frugiperda) as an indicator of global warming. Revista Chapingo Serie Zonas Áridas 19(1):1–16. https://doi.org/10.5154/r.rchsza.2020.11.01

    Article  Google Scholar 

  • Riahi K, Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Baue RN, Calvin K, Dellink R, Fricko O, Lutz W (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Change 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Rwomushana I, Bateman M, Beale T, Beseh P, Cameron K, Chiluba M, Clottey V, Davis DR, Early R, Godwin J, Gonzalez-Moreno P, Kansiime M, Kenis M, Makale F, Mugambi I, Murphy S, Nunda W, Phiri N, Pratt C, Tambo J (2018) Fall armyworm: impacts and implications for Africa: evidence note update. CABI, Wallingford

    Google Scholar 

  • Sharanabasappa KCM, Asokan R, Mahadevaswamy HM, Maruthi MS, Pavithro HB, Kavita H, Shivaray N, Prabhu ST, Goergin G (2018) First report of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) an alien invasive pest on maize in India. Pest Manag Hortic Ecosyst 24:23–29

    Google Scholar 

  • Silvain JF, Ti-A-Hing J (1985) Prediction of larval infestation in pasture grasses by Spodoptera frugiperda (Lepidoptera: Noctuidae from estimates of adult abundance. Fla Entomol 68:686–691. https://doi.org/10.2307/3494875

    Article  Google Scholar 

  • Sims SR (2008) Influence of soil type and rainfall on pupal survival and adult emergence of the fall armyworm (Lepidoptera: Noctuidae) in Southern Florida. J Entomol Sci 43:373–380

    Article  Google Scholar 

  • Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87

    Article  Google Scholar 

  • Sparks TH, Dennis RL, Croxton PJ, Cade M (2007) Increased migration of Lepidoptera linked to climate change. Eur J Entomol 104:139–143

    Article  Google Scholar 

  • Tepa-Yotto GT, Tonnang HEZ, Goergen G, Subramanian S, Kimathi E, Abdel-Rahman EM, Flø D, Thunes KH, Fiaboe KKM, Niassy S, Bruce A, Mohamed SA, Tamò M, Ekesi S, Saethre M (2021) Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control. Insects 12:273. https://doi.org/10.3390/insects12040273

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Watson W, Zhang R (2010) The potential distribution of an invasive mealybug Phenacoccus solenopsis and its threat to cotton. Asia Agric for Entomol 12:403–416

    Article  Google Scholar 

  • Wang R, Jiang C, Guo X, Chen D, You C, Zhang Y, Wang M, Li Q (2020) Potential distribution of Spodoptera frugiperda (J. E. Smith) in China and the major factors influencing distribution. Glob Ecol Conserv 21:e00865. https://doi.org/10.1016/j.gecco.2019.e00865

    Article  Google Scholar 

  • Warren D, Matzke N, Cardillo M, Dinnage R (2017) ENMTools: analysis of niche evolution using niche and distribution models

  • Wenger SJ, Olden JD (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol Evol 3:260–267. https://doi.org/10.1111/j.2041-210X.2011.00170.x

    Article  Google Scholar 

  • Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeor 60:255–267. https://doi.org/10.1007/s00484-015-1022-x

    Article  CAS  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Article  Google Scholar 

  • Young JR (1979) Fall armyworm: control with insecticides. Fla Entomol 62:130–133

    Article  Google Scholar 

  • Zacarias DA (2020) Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim Change. https://doi.org/10.1007/s10584-020-02722-5

    Article  Google Scholar 

  • Zhao W, Hu A, Ni Z, Wang Q, Zhang E, Yang X, Dong H, Shen J, Zhu L, Wang J (2019) Biodiversity patterns across taxonomic groups along a lake water-depth gradient: effects of abiotic and biotic drivers. Sci Total Environ 686:1262–2127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director, Indian Council of Agricultural Research—Central Coastal Agricultural Research Institute, Goa, for the support and facilities provided to carry out the work.

Funding

This work was supported by the Director, Indian Council of Agricultural Research—Central Coastal Agricultural Research Institute, Goa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maruthadurai Ramasamy.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by Antonio Biondi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSM 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, M., Das, B. & Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J Pest Sci 95, 841–854 (2022). https://doi.org/10.1007/s10340-021-01411-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01411-1

Keywords

Navigation