1932

Abstract

Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091520-052742
2021-07-27
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091520-052742.html?itemId=/content/journals/10.1146/annurev-anchem-091520-052742&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B. 2020. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact 18:100219–29
    [Google Scholar]
  2. 2. 
    Williams SKR, Runyon JR, Ashames AA. 2011. Field-flow fractionation: addressing the nano challenge. Anal. Chem. 83:3634–42
    [Google Scholar]
  3. 3. 
    Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, van Wezel AP. 2018. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5:71640–49
    [Google Scholar]
  4. 4. 
    Contado C. 2017. Field flow fractionation techniques to explore the “nano-world. .” Anal. Bioanal. Chem. 409:102501–18
    [Google Scholar]
  5. 5. 
    Pettibone JM, Gigault J, Hackley VA. 2013. Discriminating the states of matter in metallic nanoparticle transformations: What are we missing?. ACS Nano 7:2491–99
    [Google Scholar]
  6. 6. 
    Gigault J, Grassl B. 2017. Improving the understanding of fullerene (nC60) aggregate structures: fractal dimension characterization by static light scattering coupled to asymmetrical flow field flow fractionation. J. Colloid Interface Sci. 502:193–200
    [Google Scholar]
  7. 7. 
    Caputo F, Arnould A, Bacia M, Ling WL, Rustique E et al. 2019. Measuring particle size distribution by asymmetric flow field flow fractionation: a powerful method for preclinical characterization of lipid-based nanoparticles. Mol. Pharm. 16:756–67
    [Google Scholar]
  8. 8. 
    Adkins GB, Sun E, Coreas R, Zhong W. 2020. Asymmetrical flow field flow fractionation coupled to nanoparticle tracking analysis for rapid online characterization of nanomaterials. Anal. Chem. 92:7071–78
    [Google Scholar]
  9. 9. 
    Schwaferts C, Sogne V, Welz R, Meier F, Klein T et al. 2020. Nanoplastic analysis by on-line coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal. Chem. 92:5813–20
    [Google Scholar]
  10. 10. 
    Kim ST, Cho H-R, Jung EC, Cha W, Baik M-H, Lee S. 2017. Asymmetrical flow field-flow fractionation coupled with a liquid waveguide capillary cell for monitoring natural colloids in groundwater. Appl. Geochem. 87:102–7
    [Google Scholar]
  11. 11. 
    Schimpf ME, Caldwell KD, Giddings JC. 2000. Field Flow Fractionation Handbook New York: Wiley
  12. 12. 
    Mélin C, Perraud A, Christou N, Bibes R, Cardot P et al. 2017. New ex-ovo colorectal-cancer models from different SdFFF-sorted tumor-initiating cells. Anal. Bioanal. Chem. 407:8433–43
    [Google Scholar]
  13. 13. 
    Shiri F, Petersen KE, Romanov V, Zou Q, Gale BK. 2020. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation. Anal. Bioanal. Chem. 412:1563–72
    [Google Scholar]
  14. 14. 
    Naves T, Battu S, Jauberteau M-O, Cardot PJP, Ratinaud M-H, Verdier M. 2012. Autophagic subpopulation sorting by sedimentation field-flow fractionation. Anal. Chem. 84:8748–55
    [Google Scholar]
  15. 15. 
    Faye P-A, Vedrenne N, De La Cruz-Morcillo MA, Barrot C-C, Richard L et al. 2016. New method for sorting endothelial and neural progenitors from human induced pluripotent stem cells by sedimentation field-flow fractionation. Anal. Chem. 88:6696–702
    [Google Scholar]
  16. 16. 
    Mélin C, Perraud A, du Puch CBM, Loum E, Giraud S et al. 2014. Sedimentation field-flow fractionation monitoring of in vitro enrichment in cancer stem cells by specific serum-free culture medium. J. Chromatogr. B. 963:40–46
    [Google Scholar]
  17. 17. 
    Vedrenne N, Sarrazy V, Battu S, Bordeau N, Richard L et al. 2016. Neural stem cell properties of an astrocyte subpopulation sorted by sedimentation field-flow fractionation. Rejuvenation Res 19:5362–72
    [Google Scholar]
  18. 18. 
    Sarrazy V, Vedrenne N, Bordeau N, Billet F, Cardot P et al. 2013. Fast astrocyte isolation by sedimentation field flow fractionation. J. Chromatogr. A 1289:88–93
    [Google Scholar]
  19. 19. 
    Mélin C, Lacroix A, Lalloué F, Pothier A, Zhang LY et al. 2013. Improved sedimentation field-flow fractionation separation channel for concentrated cellular elution. J. Chromatogr. A 1302:118–24
    [Google Scholar]
  20. 20. 
    Ibrahim T, Battu S, Cook-Moreau J, Cardot P. 2012. Instrumentation of hollow fiber flow field flow fractionation for selective cell elution. J. Chromatogr. B 901:59–66
    [Google Scholar]
  21. 21. 
    Kinio S, Mills JK. 2017. Localized electroporation with dielectrophoretic field flow fractionation: toward removal of circulating tumour cells from human blood. IEEE Trans. Nanobiosci. 16:8802–9
    [Google Scholar]
  22. 22. 
    Shamloo A, Kamali A. 2017. Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types. J. Sep. Sci. 40:4067–75
    [Google Scholar]
  23. 23. 
    Kuklenyik Z, Jones JI, Gardner MS, Schieltz DM, Parks BA et al. 2018. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLOS ONE 13:e0194797
    [Google Scholar]
  24. 24. 
    Lee JH, Yang JS, Lee S-H, Moon MH. 2018. Analysis of lipoprotein-specific lipids in patients with acute coronary syndrome by asymmetrical flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 1099:56–63
    [Google Scholar]
  25. 25. 
    Kim SH, Yang JS, Lee JC, Lee J-Y, Lee J-Y et al. 2018. Lipidomic alterations in lipoproteins of patients with mild cognitive impairment and Alzheimer's disease by asymmetrical flow field-flow fractionation and nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1568:91–100
    [Google Scholar]
  26. 26. 
    Lee KG, Lee GB, Yang JS, Moon MH. 2020. Perturbations of lipids and oxidized phospholipids in lipoproteins of patients with postmenopausal osteoporosis evaluated by asymmetrical flow field-flow fractionation and nanoflow UHPLC–ESI–MS/MS. Antioxidants 9:46
    [Google Scholar]
  27. 27. 
    Bria CRM, Afshinnia F, Skelly PW, Rajendiran TM, Kayampilly P et al. 2019. Asymmetrical flow field-flow fractionation for improved characterization of human plasma lipoproteins. Anal. Bioanal. Chem. 411:777–86
    [Google Scholar]
  28. 28. 
    Yang JS, Lee JC, Byeon SK, Rha KH, Moon MH. 2017. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal. Chem. 89:2488–96
    [Google Scholar]
  29. 29. 
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z et al. 2018. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20:3332–43
    [Google Scholar]
  30. 30. 
    Zhang H, Lyden D. 2019. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 14:41027–53
    [Google Scholar]
  31. 31. 
    Petersen KE, Shiri F, White T, Bardi GT, Sant H et al. 2018. Exosome isolation: cyclical electrical field flow fractionation in low-ionic-strength fluids. Anal. Chem. 90:2112783–90
    [Google Scholar]
  32. 32. 
    Eskelin K, Varjosalo M, Ravantti J, Mäkinen K. 2019. Ribosome profiles and riboproteomes of healthy and Potato virus A- and Agrobacterium-infected Nicotiana benthamiana plants. Mol. Plant Pathol. 20:3392–409
    [Google Scholar]
  33. 33. 
    Lampi M, Oksanen HM, Meier F, Moldenhauer E, Poranen MM et al. 2018. Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage ϕ6. J. Chromatogr. B 1095:251–57
    [Google Scholar]
  34. 34. 
    Eskelin K, Poranen MM, Oksanen HM. 2019. Asymmetrical flow field-flow fractionation on virus and virus-like particle applications. Microorganisms 7:555
    [Google Scholar]
  35. 35. 
    Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC. 2019. Analytical techniques to characterize the structure, properties, and assembly of virus capsids. Anal. Chem. 91:622–36
    [Google Scholar]
  36. 36. 
    Eskelin K, Poranen MM. 2018. Controlled disassembly and purification of functional viral subassemblies using asymmetrical flow field-flow fractionation (AF4). Viruses 10:11579
    [Google Scholar]
  37. 37. 
    Zhang M, Yang J, Cai Z, Feng Y, Wang Y et al. 2019. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 6:709–35
    [Google Scholar]
  38. 38. 
    Bolinsson H, Lu Y, Hall S, Nilsson L, Håkansson A. 2018. An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: the nanoemulsion method (featuring multi angle light scattering). J. Chromatogr. A 1533:155–63
    [Google Scholar]
  39. 39. 
    Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW. 2018. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: a critical comparative review. TrAC Trends Anal. Chem. 106:202–12
    [Google Scholar]
  40. 40. 
    Baalousha M, Stolpe B, Lead JR. 2011. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. A 1218:274078–103
    [Google Scholar]
  41. 41. 
    Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F et al. 2010. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 408:1745–54
    [Google Scholar]
  42. 42. 
    Contado C. 2015. Nanomaterials in consumer products: a challenging analytical problem. Front. Chem. 3:48
    [Google Scholar]
  43. 43. 
    von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K. 2011. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal. Chem. 30:425–36
    [Google Scholar]
  44. 44. 
    Pornwilard M-M, Siripinyanond A. 2014. Field-flow fractionation with inductively coupled plasma mass spectrometry: past, present, and future. J. Anal. At. Spectrom. 29:1739–52
    [Google Scholar]
  45. 45. 
    Loosli F, Wang J, Sikder M, Afshinnia K, Baalousha M. 2020. Analysis of engineered nanomaterials (Ag, CeO2, and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations. Sci. Total Environ. 715:13692737
    [Google Scholar]
  46. 46. 
    Barber A, Kly S, Moffit MG, Rand L, Ranville JF 2020. Coupling single particle ICP-MS with field-flow fractionation for characterizing metal nanoparticles contained in nanoplastic colloids. Environ. Sci. Nano 7:514–24
    [Google Scholar]
  47. 47. 
    Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF. 2012. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom. 27:1131–42
    [Google Scholar]
  48. 48. 
    Yi Z, Loosli F, Wang J, Berti D, Baalousha M. 2020. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils. Environ. Chem. Lett. 18:215–27
    [Google Scholar]
  49. 49. 
    Smith WC, Morse JR, Bria CRM, Schaak RE, Williams SKR. 2018. Composition-based separation of Pt-Fe3O4 hybrid nanoparticles by thermal field-flow fractionation. ACS Appl. Nano Mater. 1:6435–43
    [Google Scholar]
  50. 50. 
    Dou H, Kim B-J, Choi S-H, Jung EC, Lee S 2014. Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field-flow fractionation. J. Nanoparticle Res. 16:2679–91
    [Google Scholar]
  51. 51. 
    Tadjiki S, Montaño MD, Assemi S, Barber A, Ranville J, Beckett R. 2017. Measurement of the density of engineered silver nanoparticles using centrifugal FFF-TEM and single particle ICP-MS. Anal. Chem. 89:6056–64
    [Google Scholar]
  52. 52. 
    Loosli F, Yi Z, Wang J, Baalousha M 2019. Dispersion of natural nanomaterials in surface waters for better characterization of their physicochemical properties by AF4-ICP-MS-TEM. Sci. Total Environ. 682:663–72
    [Google Scholar]
  53. 53. 
    López-Sanz S, Rodríguez Fariñas N, Martín-Doimeadios RCR, Ríos Á 2019. Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium. Anal. Chim. Acta 1053:178–85
    [Google Scholar]
  54. 54. 
    Kim W, Bae J, Eum CH, Jung J, Lee S 2018. Study on dispersibility of thermally stable carbon black particles in ink using asymmetric flow field-flow fractionation (AsFlFFF). Microchem. J. 142:167–74
    [Google Scholar]
  55. 55. 
    Herrero P, Bäuerlein PS, Emke E, Pocurull E, de Voogt P. 2014. Asymmetrical flow field-flow fractionation hyphenated to Orbitrap high resolution mass spectrometry for the determination of (functionalised) aqueous fullerene aggregates. J. Chromatogr. A 1356:277–82
    [Google Scholar]
  56. 56. 
    Gigault J, El Hadri H, Reynaud S, Deniau E, Grassl B. 2017. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal. Bioanal. Chem. 409:296761–69
    [Google Scholar]
  57. 57. 
    Amaro-Gahete J, Benítez A, Otero R, Esquivel D, Jiménez-Sanchidrián C et al. 2019. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials 9:152–67
    [Google Scholar]
  58. 58. 
    El Hadri H, Gigault J, Tan J, Hackley VA. 2018. An assessment of retention behavior for gold nanorods in asymmetrical flow field-flow fractionation. Anal. Bioanal. Chem. 410:6977–84
    [Google Scholar]
  59. 59. 
    Runyon JR, Goering A, Yong KT, Williams SKR. 2013. Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface plasmon resonance. Anal. Chem. 85:940–48
    [Google Scholar]
  60. 60. 
    Chen M, Parot J, Mukherjee A, Couillard M, Zou S et al. 2020. Characterization of size and aggregation for cellulose nanocrystal dispersions separated by asymmetrical-flow field-flow fractionation. Cellulose 27:42015–28
    [Google Scholar]
  61. 61. 
    Saenmuangchin R, Siripinyanond A. 2018. Flow field-flow fractionation for hydrodynamic diameter estimation of gold nanoparticles with various types of surface coatings. Anal. Bioanal. Chem. 410:6845–59
    [Google Scholar]
  62. 62. 
    Schwaferts C, Niessner R, Elsner M, Ivleva NP. 2019. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal. Chem. 112:52–65
    [Google Scholar]
  63. 63. 
    Correia M, Loeschner K. 2018. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal. Bioanal. Chem. 410:225603–15
    [Google Scholar]
  64. 64. 
    Qu H, Quevedo IR, Linder SW, Fong A, Mudalige TK. 2016. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time. J. Nanoparticle Res. 18:292–302
    [Google Scholar]
  65. 65. 
    Gigault J, Hackley VA. 2013. Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation. Anal. Bioanal. Chem. 405:196251–58
    [Google Scholar]
  66. 66. 
    Noskov S, Scherer C, Maskos M. 2013. Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation. J. Chromatogr. A 1274:151–58
    [Google Scholar]
  67. 67. 
    Zhang X, Li Y, Shen S, Lee S, Dou H. 2018. Field-flow fractionation: a gentle separation and characterization technique in biomedicine. TrAC Trends Anal. Chem. 108:231–38
    [Google Scholar]
  68. 68. 
    Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P. 2014. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery. J. Pharm. Biomed. Anal. 87:53–61
    [Google Scholar]
  69. 69. 
    Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. 2014. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal. Chem. 86:5201–10
    [Google Scholar]
  70. 70. 
    Fan Y, Marioli M, Zhang K. 2021. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 192:113642–63
    [Google Scholar]
  71. 71. 
    Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A. 2019. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 299:31–43
    [Google Scholar]
  72. 72. 
    Elvang PA, Stein PC, Bauer-Brandl A, Brandl M. 2017. Characterization of co-existing colloidal structures in fasted state simulated fluids FaSSIF: a comparative study using AF4/MALLS, DLS and DOSY. J. Pharm. Biomed. Anal. 145:531–36
    [Google Scholar]
  73. 73. 
    Engel A, Plöger M, Mulac D, Langer K. 2014. Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. Int. J. Pharm. 461:137–44
    [Google Scholar]
  74. 74. 
    Contado C, Vighi E, Dalpiaz A, Leo E 2013. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal. Bioanal. Chem. 405:703–11
    [Google Scholar]
  75. 75. 
    Wagner M, Barthel MJ, Freund RRA, Hoeppener S, Traeger A et al. 2014. Solution self-assembly of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether)-block-poly(allyl glycidyl ether) based triblock terpolymers: a field-flow fractionation study. Polym. Chem. 5:246943–56
    [Google Scholar]
  76. 76. 
    Boye S, Appelhans D, Boyko V, Zschoche S, Komber H et al. 2012. pH-triggered aggregate shape of different generations lysine-dendronized maleimide copolymers with maltose shell. Biomacromolecules 13:124222–35
    [Google Scholar]
  77. 77. 
    Pound-Lana GEN, Garcia GM, Trindade IC, Capelari-Oliveira P, Pontifice TG et al. 2019. Phthalocyanine photosensitizer in polyethylene glycol-block-poly(lactide-co-benzyl glycidyl ether) nanocarriers: probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres. Mater. Sci. Eng. C 94:220–33
    [Google Scholar]
  78. 78. 
    Miwa S, Takahashi R, Rössel C, Matsumoto S, Fujii S et al. 2018. Core-shell-corona micelles from a polyether-based triblock terpolymer: investigation of the pH-dependent micellar structure. Langmuir 34:267813–20
    [Google Scholar]
  79. 79. 
    Till U, Gaucher-Delmas M, Saint-Aguet P, Hamon G, Marty J-D et al. 2014. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques. Anal. Bioanal. Chem. 406:307841–53
    [Google Scholar]
  80. 80. 
    Deodhar GV, Adams ML, Joardar S, Joglekar M, Davidson M et al. 2018. Conserved activity of reassociated homotetrameric protein subunits released from mesoporous silica nanoparticles. Langmuir 34:1228–33
    [Google Scholar]
  81. 81. 
    Roda B, Marassi V, Zattoni A, Borghi F, Anand R et al. 2018. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal-organic framework nanoparticles. Anal. Bioanal. Chem. 410:5245–53
    [Google Scholar]
  82. 82. 
    Khosa A, Reddi S, Saha RN. 2018. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. 103:598–613
    [Google Scholar]
  83. 83. 
    Qu H, Wang J, Wu Y, Zheng J, Krishnaiah YSR et al. 2018. Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: a cyclosporine ophthalmic emulsion case. Int. J. Pharm. 538:215–22
    [Google Scholar]
  84. 84. 
    Elvang PA, Hinna AH, Brouwers J, Hens B, Augustijns P, Brandl M. 2016. Bile salt micelles and phospholipid vesicles present in simulated and human intestinal fluids: structural analysis by flow field-flow fractionation/multiangle laser light scattering. J. Pharm. Sci. 105:92832–39
    [Google Scholar]
  85. 85. 
    Till U, Gaucher M, Amouroux B, Gineste S, Lonetti B et al. 2017. Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies. J. Chromatogr. A 1481:101–10
    [Google Scholar]
  86. 86. 
    Parot J, Caputo F, Mehn D, Hackley VA, Calzolai L. 2020. Physical characterization of liposomal drug formulations using multi-detector asymmetrical-flow field flow fractionation. J. Control. Release 320:495–510
    [Google Scholar]
  87. 87. 
    Hu Y, Crist RM, Clogston JD. 2020. The utility of asymmetric flow field-flow fractionation for preclinical characterization of nanomedicines. Anal. Bioanal. Chem. 512:425–38
    [Google Scholar]
  88. 88. 
    Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. 2014. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation. J. Chromatogr. A 1358:217–24
    [Google Scholar]
  89. 89. 
    Pollastrini J, Dillon TM, Bondarenko P, Chou RYT. 2011. Field flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution. Anal. Biochem. 414:88–98
    [Google Scholar]
  90. 90. 
    Bria CRM, Jones J, Charlesworth A, Williams SKR. 2016. Probing submicron aggregation kinetics of an IgG protein by asymmetrical flow field-flow fractionation. J. Pharm. Sci. 105:131–39
    [Google Scholar]
  91. 91. 
    Ma D, Martin N, Tribet C, Winnik FM. 2014. Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Anal. Bioanal. Chem. 406:7539–47
    [Google Scholar]
  92. 92. 
    Leeman M, Choi J, Hansson S, Storm MU, Nilsson L. 2018. Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 410:204867–73
    [Google Scholar]
  93. 93. 
    Bria CRM, Williams SKR. 2016. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability. J. Chromatogr. A 1465:155–64
    [Google Scholar]
  94. 94. 
    Boll B, Josse L, Heubach A, Hochenauer S, Finkler C et al. 2018. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation. J. Sep. Sci. 41:132854–64
    [Google Scholar]
  95. 95. 
    Caracciolo G, Farokhzad OC, Mahmoudi M. 2017. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol 35:257–64
    [Google Scholar]
  96. 96. 
    Ojea-Jiménez I, Capomaccio R, Osório I, Mehn D, Ceccone G et al. 2018. Rational design of multi-functional gold nanoparticles with controlled biomolecule adsorption: a multi-method approach for in-depth characterization. Nanoscale 10:2110173–81
    [Google Scholar]
  97. 97. 
    Safenkova IV, Slutskaya ES, Panferov VG, Zherdev AV, Dzantiev BB. 2016. Complex analysis of concentrated antibody-gold nanoparticle conjugates’ mixtures using asymmetric flow field-flow fractionation. J. Chromatogr. A 1477:56–63
    [Google Scholar]
  98. 98. 
    Bouzas-Ramos D, García-Alonso JI, Costa-Fernández JM, Ruiz Encinar J 2019. Quantitative assessment of individual populations present in nanoparticle-antibody conjugate mixtures using AF4-ICP-MS/MS. Anal. Chem. 91:53567–74
    [Google Scholar]
  99. 99. 
    Ferreira HS, Moreira-Alvarez B, Montoro Bustos AR, Encinar JR, Costa-Fernández JM, Sanz-Medel A 2020. Capabilities of asymmetrical flow field–flow fractionation on-line coupled to different detectors for characterization of water-stabilized quantum dots bioconjugated to biomolecules. Talanta 206:120228–36
    [Google Scholar]
  100. 100. 
    Niezabitowska E, Smith J, Prestly MR, Akhtar R, von Aulock FW et al. 2018. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv 8:3016444–54
    [Google Scholar]
  101. 101. 
    Contado C, Mehn D, Gilliland D, Calzolai L. 2019. Characterization methods for studying protein adsorption on nano-polystyrene beads. J. Chromatogr. A 1606:460383–94
    [Google Scholar]
  102. 102. 
    Ashby J, Schachermeyer S, Pan S, Zhong W. 2013. Dissociation-based screening of nanoparticle−protein interaction via flow field-flow fractionation. Anal. Chem. 85:7494–7501
    [Google Scholar]
  103. 103. 
    Weber C, Simon J, Mailänder V, Morsbach S, Landfester K. 2018. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater 76:217–24
    [Google Scholar]
  104. 104. 
    Boye S, Ennen F, Scharfenberg L, Appelhans D, Nilsson L, Lederer A 2015. From 1D rods to 3D networks: a biohybrid topological diversity investigated by asymmetrical flow field-flow fractionation. Macromolecules 48:4607–19
    [Google Scholar]
  105. 105. 
    Till U, Gibot L, Mingotaud C, Vicendo P, Rols M-P et al. 2016. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. Nanotechnology 27:315102–12
    [Google Scholar]
  106. 106. 
    Fuentes C, Choi J, Zielke C, Peñarrieta JM, Lee S, Nilsson L. 2019. Comparison between conventional and frit-inlet channel in separation of biopolymers by asymmetric flow field-flow fractionation. Analyst 144:4559–68
    [Google Scholar]
  107. 107. 
    Bria CRM, Skelly PW, Morse JR, Schaak RE, Williams SKR. 2017. Semi-preparative asymmetrical flow field-flow fractionation: a closer look at channel dimensions and separation performance. J. Chromatogr. A 1499:149–57
    [Google Scholar]
  108. 108. 
    Marioli M, Kavurt B, Stamatialis D, Kok WT. 2019. Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation. J. Chromatogr. A 1605:360347–56
    [Google Scholar]
  109. 109. 
    Marioli M, Kok WT. 2020. Continuous asymmetrical flow field-flow fractionation for the purification of proteins and nanoparticles. Sep. Purif. Technol. 242:116744–53
    [Google Scholar]
  110. 110. 
    Tan P, Yang J, Nischwitz V 2020. A novel approach for determination of the dissolved and the particulate fractions in aqueous samples by flow field flow fractionation via online monitoring of both the cross flow and the detector flow using ICP-MS. J. Anal. At. Spectrom. 35:548–59
    [Google Scholar]
  111. 111. 
    Cuss CW, Grant-Weaver I, Shotyk W. 2017. AF4-ICPMS with the 300 Da membrane to resolve metal-bearing “colloids” <1 kDa: optimization, fractogram deconvolution, and advanced quality control. Anal. Chem. 89:8027–35
    [Google Scholar]
  112. 112. 
    Huclier-Markai S, Grivaud-Le Du A, N'tsiba E, Montavon G, Mougin-Degraef M, Barbet J 2018. Coupling a gamma-ray detector with asymmetrical flow field flow fractionation (AF4): application to a drug-delivery system for alpha-therapy. J. Chromatogr. A 1573:107–14
    [Google Scholar]
  113. 113. 
    Maguire CM, Rösslein M, Wick P, Prina-Mello A. 2018. Characterisation of particles in solution—a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 19:1732–45
    [Google Scholar]
  114. 114. 
    Hu Z, Ye C, Mi W, Zhao Y, Quan C et al. 2018. Light-scattering detection within the difficult size range of protein particle measurement using flow cytometry. Nanoscale 10:4119277–85
    [Google Scholar]
  115. 115. 
    Sitar S, Kejž A, Pahovnik D, Kogej K, Tuš Ek-ZM et al. 2015. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal. Chem. 87:9225–33
    [Google Scholar]
  116. 116. 
    Kato H, Nakamura A, Banno H. 2019. Determination of number-based size distribution of silica particles using centrifugal field-flow fractionation. J. Chromatogr. A 1602:409–18
    [Google Scholar]
  117. 117. 
    Hwang JY, Youn S, Yang I-H. 2019. Gravitational field flow fractionation: enhancing the resolution power by using an acoustic force field. Anal. Chim. Acta 1047:238–47
    [Google Scholar]
  118. 118. 
    Johann C, Elsenberg S, Schuch H, Rösch U. 2015. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation. Anal. Chem. 87:84292–98
    [Google Scholar]
  119. 119. 
    Toney M, Baiamonte L, Smith WC, Williams SKR 2021. Field-flow fractionation techniques for polymer characterization. Molecular Characterization of Polymers: A Fundamental Guide MI Malik, J Mays, MR Shah pp. 12971 Amsterdam: Elsevier
    [Google Scholar]
  120. 120. 
    Giddings JC, Yoon YH, Myers MN. 1975. Evaluation and comparison of gel permeation chromatography and thermal field-flow fractionation for polymer separations. Anal. Chem. 47:1126–31
    [Google Scholar]
  121. 121. 
    Otte T, Pasch H, Macko T, Brüll R, Stadler FJ et al. 2011. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography. J. Chromatogr. A 1218:274257–67
    [Google Scholar]
  122. 122. 
    Gunderson JJ, Giddings JC. 1986. Comparison of polymer resolution in thermal field-flow fractionation and size-exclusion chromatography. Anal. Chim. Acta 189:1–15
    [Google Scholar]
  123. 123. 
    Meunier DM, Wade JH, Janco M, Cong R, Gao W et al. 2021. Recent advances in separation-based techniques for synthetic polymer characterization. Anal Chem. 93:273–94
    [Google Scholar]
  124. 124. 
    Smith WC, Geisler M, Lederer A, Williams SKR. 2019. Thermal field-flow fractionation for characterization of architecture in hyperbranched aromatic-aliphatic polyesters with controlled branching. Anal. Chem. 91:1912344–51
    [Google Scholar]
  125. 125. 
    Geisler M, Smith WC, Plüschke L, Mundil R, Merna J et al. 2019. Topology analysis of chain walking polymerized polyethylene: an alternative approach for the branching characterization by thermal FFF. Macromolecules 52:228662–71
    [Google Scholar]
  126. 126. 
    Viktor Z, Pasch H. 2020. Two-dimensional fractionation of complex polymers by comprehensive online-coupled thermal field-flow fractionation and size exclusion chromatography. Anal. Chim. Acta 1107:225–32
    [Google Scholar]
  127. 127. 
    Greyling G, Pasch H. 2015. Tacticity separation of poly(methyl methacrylate) by multidetector thermal field-flow fractionation. Anal. Chem. 87:3011–18
    [Google Scholar]
  128. 128. 
    Muza UL, Greyling G, Pasch H. 2018. Stereocomplexation of polymers in micelle nanoreactors as studied by multiple detection thermal field-flow fractionation. Anal. Chem. 90:13987–95
    [Google Scholar]
  129. 129. 
    Muza UL, Greyling G, Pasch H. 2017. Characterization of complex polymer self-assemblies and large aggregates by multidetector thermal field-flow fractionation. Anal. Chem. 89:7216–24
    [Google Scholar]
  130. 130. 
    Gigault J, Pettibone JM, Schmitt C, Hackley VA. 2014. Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal. Chim. Acta 809:9–24
    [Google Scholar]
  131. 131. 
    ISO (Int. Organ. Stand.) 2018. ISO/TS 21362:2018 Nanotechnologies—Analysis of Nano-Objects Using Asymmetrical-Flow and Centrifugal Field-Flow Fractionation Geneva: ISO https://www.iso.org/standard/70761.html
  132. 132. 
    Wahlund K-G. 2013. Flow field-flow fractionation: critical overview. J. Chromatogr. A 1287:97–112
    [Google Scholar]
  133. 133. 
    Håkansson A, Magnusson E, Bergenståhl B, Nilsson L. 2012. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach. J. Chromatogr. A 1253:120–26
    [Google Scholar]
  134. 134. 
    Magnusson E, Håkansson A, Janiak J, Bergenståhl B, Nilsson L. 2012. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation. J. Chromatogr. A 1253:127–33
    [Google Scholar]
  135. 135. 
    Williams PS. 2016. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation. Anal. Bioanal. Chem. 408:123247–63
    [Google Scholar]
  136. 136. 
    Williams PS. 2017. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation. Anal. Bioanal. Chem. 409:317–34
    [Google Scholar]
  137. 137. 
    Wang J-L, Alasonati E, Fisicaro P, Benedetti MF, Martin M. 2018. Theoretical and experimental investigation of the focusing position in asymmetrical flow field-flow fractionation (AF4). J. Chromatogr. A 1561:67–75
    [Google Scholar]
  138. 138. 
    Dou H, Lee YJ, Jung EC, Lee BC, Lee S 2013. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material. J. Chromatogr. A 1304:211–19
    [Google Scholar]
  139. 139. 
    Dou H, Jung EC, Lee S 2015. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation. J. Chromatogr. A 1393:115–21
    [Google Scholar]
  140. 140. 
    Mudalige TK, Qu H, Linder SW. 2017. Rejection of commonly used electrolytes in asymmetric flow field flow fractionation: effects of membrane molecular weight cutoff size, fluid dynamics, and valence of electrolytes. Langmuir 33:61442–50
    [Google Scholar]
  141. 141. 
    Jochem A-R, Ankah GN, Meyer L-A, Elsenberg S, Johann C, Kraus T 2016. Colloidal mechanism of gold mechanisms of gold nanoparticle loss in asymmetric flow field-flow fractionation. Anal. Chem. 88:2010065–73
    [Google Scholar]
  142. 142. 
    Williams SKR, Caldwell KD. 2012. Field-Flow Fractionation in Biopolymer Analysis Wien: Springer-Verlag
  143. 143. 
    Kato H, Nakamura A, Banno H, Shimizu M. 2018. Separation of different-sized silica nanoparticles using asymmetric flow field-flow fractionation by control of the Debye length of the particles with the addition of electrolyte molecules. Colloids Surfaces A 538:678–85
    [Google Scholar]
  144. 144. 
    Geisler M, Lederer A. 2020. Non-parabolicity correction for fifty-nine solvents and a retention study for strongly distorted flow-profiles in thermal field-flow fractionation. J. Chromatogr. A 1621:461082–90
    [Google Scholar]
  145. 145. 
    Sitar S, Vezočnik V, Maček P, Kogej K, Pahovnik D, Žagar E. 2017. Pitfalls in size characterization of soft particles by dynamic light scattering online coupled to asymmetrical flow field-flow fractionation. Anal. Chem. 89:2111744–52
    [Google Scholar]
  146. 146. 
    Wyatt PJ. 2014. Measurement of special nanoparticle structures by light scattering. Anal. Chem. 86:157171–83
    [Google Scholar]
  147. 147. 
    Zielke C, Fuentes C, Piculell L, Nilsson L. 2018. Co-elution phenomena in polymer mixtures studied by asymmetric flow field-flow fractionation. J. Chromatogr. A 1532:251–56
    [Google Scholar]
  148. 148. 
    Perez-Rea D, Zielke C, Nilsson L. 2017. Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering. J. Chromatogr. A 1506:138–41
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091520-052742
Loading
/content/journals/10.1146/annurev-anchem-091520-052742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error