1932

Abstract

Liquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091520-093931
2021-07-27
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091520-093931.html?itemId=/content/journals/10.1146/annurev-anchem-091520-093931&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Macías M, Alegre E, Díaz-Lagares A, Patiño A, Pérez-Gracia JL et al. 2018. Liquid biopsy: from basic research to clinical practice. Adv. Clin. Chem. 83:73–119
    [Google Scholar]
  2. 2. 
    Jeffery SS, Toner M. 2019. Liquid biopsy: a perspective for probing blood for cancer. Lab Chip 19:548–49
    [Google Scholar]
  3. 3. 
    Jackson JM, Witek MA, Kamande JW, Sope SA. 2017. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem. Soc. Rev. 46:4245–80
    [Google Scholar]
  4. 4. 
    Yang C, Xia B-R, Jin W-L, Lou G 2019. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 19:341
    [Google Scholar]
  5. 5. 
    Guan Y, Xu F, Tian J, Chen H, Yang C et al. 2020. Pathology of circulating tumor cells and the available capture tools. Oncol. Rep. 43:1355–64
    [Google Scholar]
  6. 6. 
    Pantel K, Speicher MR. 2016. The biology of circulating tumor cells. Oncogene 35:1216–24
    [Google Scholar]
  7. 7. 
    Pantel K, Brakenhoff RH. 2004. Dissecting the metastatic cascade. Nat. Rev. Cancer 4:448–56
    [Google Scholar]
  8. 8. 
    Mandel P, Métais P. 1948. Les acides nucleiques du plasma sanguin chez l'homme. C. R. Acad. Sci. Paris 142:241–43
    [Google Scholar]
  9. 9. 
    Fleischhacker M, Schmidt B. 2008. Cell-free DNA resuscitated for tumor testing. Nat. Med. 14:914–15
    [Google Scholar]
  10. 10. 
    Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R et al. 2016. Fragment length of circulating tumor DNA. PLOS Genet 12:e1006162
    [Google Scholar]
  11. 11. 
    Mouliere F, Robert B, Peyrotte EA, Del Rio M, Ychou M et al. 2011. High fragmentation characterizes tumour-derived circulating DNA. PLOS ONE 6:e23418
    [Google Scholar]
  12. 12. 
    Siravegna G, Marsoni S, Siena S, Bardelli A. 2017. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14:53148
    [Google Scholar]
  13. 13. 
    Bennett CW, Berchem G, Kim YJ, El-Khoury V. 2015. Cell-Free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 7:71013–35
    [Google Scholar]
  14. 14. 
    Campos CDM, Jackson JM, Witek MA, Soper SA. 2018. Molecular profiling of liquid biopsy samples for precision medicine. Cancer J 24:93–103
    [Google Scholar]
  15. 15. 
    Malapelle U, Sirera R, Jantus-Lewintre E, Reclusa P, Calabuig-Fariñas S et al. 2017. Profile of the Roche Cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev. Mol. Diagnostics 17:209–15
    [Google Scholar]
  16. 16. 
    Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E et al. 2014. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20:430–35
    [Google Scholar]
  17. 17. 
    Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O'Connell A et al. 2016. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2:1014–22
    [Google Scholar]
  18. 18. 
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP. 2015. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65:783–97
    [Google Scholar]
  19. 19. 
    Raposo G, Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83
    [Google Scholar]
  20. 20. 
    Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J et al. 2020. First case of 2019 novel coronavirus in the United States. New Engl. J. Med. 328:929–36
    [Google Scholar]
  21. 21. 
    Schwarzenbach H, Hoon DSB, Pantel K. 2011. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11:426–37
    [Google Scholar]
  22. 22. 
    Turchinovich A, Weiz L, Burwinkel B. 2012. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci. 37:460–65
    [Google Scholar]
  23. 23. 
    Kustanovich A, Schwartz R, Peretz T, Grinshpun A. 2019. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 20:1057–67
    [Google Scholar]
  24. 24. 
    Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D et al. 2003. Microchip-based purification of DNA from biological samples. Anal. Chem. 75:1880–86
    [Google Scholar]
  25. 25. 
    Jackson KR, Borba JC, Meija M, Mills DL, Haverstick DM et al. 2016. DNA purification using dynamic solid-phase extraction on a rotationally-driven polyethylene-terephthalate microdevice. Anal. Chim. Acta 937:1–10
    [Google Scholar]
  26. 26. 
    Wen J, Legendre LA, Bienvenue JM, Landers JP. 2008. Purification of nucleic acids in microfluidic devices. Anal. Chem. 80:6472–79
    [Google Scholar]
  27. 27. 
    Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF et al. 2002. Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–33
    [Google Scholar]
  28. 28. 
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224ra24
    [Google Scholar]
  29. 29. 
    Diefenbach RJ, Lee JH, Kefford RF, Rizos H. 2018. Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet 228–229:21–27
    [Google Scholar]
  30. 30. 
    Legler TJ, Liu Z, Mavrou A, Finning K, Hromadnikova I et al. 2007. Workshop report on the extraction of foetal DNA from maternal plasma. Prenat. Diagn. 27:824–29
    [Google Scholar]
  31. 31. 
    Lee EY, Lee EJ, Yoon H, Lee DH, Kim KH. 2020. Comparison of four commercial kits for isolation of urinary cell-free DNA and sample storage conditions. Diagnostics 10:234
    [Google Scholar]
  32. 32. 
    Fleischhacker M, Schmidt B, Weickmann S, Fersching DMI, Leszinski GS et al. 2011. Methods for isolation of cell-free plasma DNA strongly affect DNA yield. Clin. Chim. Acta 412:2085–88
    [Google Scholar]
  33. 33. 
    Bronkhorst AJ, Ungerer V, Holdenrieder S. 2020. Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumor Biol 42: https://doi.org/10.1177/1010428320916314
    [Crossref] [Google Scholar]
  34. 34. 
    Mattox AK, Yan H, Bettegowda C. 2019. The potential of cerebrospinal fluid-based liquid biopsy approaches in CNS tumors. Neuro-Oncol 21:1509–18
    [Google Scholar]
  35. 35. 
    McEwen AE, Leary SES, Lockwood CM. 2020. Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front. . Cell Dev. Biol. 8:45
    [Google Scholar]
  36. 36. 
    Wright K, de Silva K, Purdie AC, Plain KM. 2020. Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep. 10:825
    [Google Scholar]
  37. 37. 
    Fromm B, Harris PD, Bachmann L. 2011. MicroRNA preparations from individual monogenean Gyrodactylus salaris—a comparison of six commercially available totalRNA extraction kits. BMC Res. Notes 4:217
    [Google Scholar]
  38. 38. 
    Hu F, Li J, Peng N, Li Z, Zhang Z et al. 2019. Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration. Analyst 144:4162–74
    [Google Scholar]
  39. 39. 
    Berry SM, Alarid ET, Beebe DJ. 2011. One-step purification of nucleic acid for gene expression analysis via immiscible filtration assisted by surface tension (IFAST). Lab Chip 11:1747–53
    [Google Scholar]
  40. 40. 
    Lee H, Na W, Park C, Park KH, Shin S 2018. Centrifugation-free extraction of circulating nucleic acids using immiscible liquid under vacuum pressure. Sci. Rep. 8:5467
    [Google Scholar]
  41. 41. 
    Campos CDM, Gamage SST, Jackson JM, Witek MA, Park DS et al. 2018. Microfluidic-based solid phase extraction of cell free DNA. Lab Chip 18:3459–70
    [Google Scholar]
  42. 42. 
    Rittich B, Spanova A. 2013. SPE and purification of DNA using magnetic particles. J. Sep. Sci. 36:2472–85
    [Google Scholar]
  43. 43. 
    Kim CJ, Park J, Sunkara V, Kim TH, Lee Y et al. 2018. Fully automated, on-site isolation of cfDNA from whole blood for cancer therapy monitoring. Lab Chip 18:1320–29
    [Google Scholar]
  44. 44. 
    Raymond CK, Raymond FC, Hill K. 2020. UltraPrep is a scalable, cost-effective, bead-based method for purifying cell-free DNA. PLOS ONE 15:e0231854
    [Google Scholar]
  45. 45. 
    Yang J, Selvaganapathy PR, Gould TJ, Dwivedi DJ, Liu D et al. 2015. A microfluidic device for rapid quantification of cell-free DNA in patients with severe sepsis. Lab Chip 15:3925–33
    [Google Scholar]
  46. 46. 
    Wei J, Zhao Z, Gao J, Wang Y, Ma L et al. 2020. Polyacrylamide/phytic acid/polydopamine hydrogel as an efficient substrate for electrochemical enrichment of circulating cell-free DNA from blood plasma. ACS Omega 5:5365–71
    [Google Scholar]
  47. 47. 
    Ouyang W, Han J. 2020. One-step nucleic acid purification and noise-resistant polymerase chain reaction by electrokinetic concentration for ultralow-abundance nucleic acid detection. Angew. Chem. Int. Ed. 132:11074–81
    [Google Scholar]
  48. 48. 
    Sonnenberg A, Marciniak JY, Krishnan R, Heller MJ. 2012. Dielectrophoretic isolation of DNA and nanoparticles from blood. Electrophoresis 33:2482–90
    [Google Scholar]
  49. 49. 
    Revenfeld ALS, Bæk R, Nielsen MH, Stensballe A, Varming K, Jørgensen M. 2014. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin. Ther. 36:830–46
    [Google Scholar]
  50. 50. 
    Hessvik NP, Llorente A. 2018. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75:193–208
    [Google Scholar]
  51. 51. 
    Witwer KW, Buzas EI, Bemis LT, Bora A, Lässer C et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2:20360
    [Google Scholar]
  52. 52. 
    Batagov AO, Kurochkin IV. 2013. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol. Direct 8:12
    [Google Scholar]
  53. 53. 
    Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. 2009. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38:215–24
    [Google Scholar]
  54. 54. 
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H et al. 2013. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom 14:319
    [Google Scholar]
  55. 55. 
    Contreras-Naranjo JC, Wu H-J, Ugaz VM. 2017. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17:3558–77
    [Google Scholar]
  56. 56. 
    Yoo YK, Lee J, Kim H, Hwang KS, Yoon DS, Lee JH. 2018. Toward exosome-based neuronal diagnostic devices. Micromachines 9:634
    [Google Scholar]
  57. 57. 
    Théry C, Amigorena S, Raposo G, Clayton A 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30:3 22.1–29
    [Google Scholar]
  58. 58. 
    Sunkara V, Woo H-K, Cho Y-K. 2016. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 141:371–81
    [Google Scholar]
  59. 59. 
    Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. 2018. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res. Int. 2018:8545347
    [Google Scholar]
  60. 60. 
    Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA et al. 2015. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci. Rep. 5:17319
    [Google Scholar]
  61. 61. 
    Abramowicz A, Widlak P, Pietrowska M. 2016. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol. BioSyst. 12:1407–19
    [Google Scholar]
  62. 62. 
    Alvarez ML, Khosroheidari M, RK Ravi, DiStefano JK. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82:1024–32
    [Google Scholar]
  63. 63. 
    Takov K, Yellon DM, Davidson SM. 2019. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. J. Extracell. Vesicles 8:1560809
    [Google Scholar]
  64. 64. 
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH et al. 2002. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270:211–26
    [Google Scholar]
  65. 65. 
    Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A et al. 2014. Benchtop isolation and characterization of functional exosomes by sequential filtration. J. Chromatogr. A 1371:125–35
    [Google Scholar]
  66. 66. 
    Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP et al. 2019. Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng 3:011503
    [Google Scholar]
  67. 67. 
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S et al. 2012. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304
    [Google Scholar]
  68. 68. 
    Weng Y, Sui Z, Shan Y, Hu Y, Chen Y et al. 2016. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst 141:4640–46
    [Google Scholar]
  69. 69. 
    Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, Oliva P, Villafani J et al. 2019. Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering 6:8
    [Google Scholar]
  70. 70. 
    Atha DH, Ingham KC. 1981. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 256:12108–17
    [Google Scholar]
  71. 71. 
    Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M et al. 2016. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J. Extracell. Vesicles 5:31655
    [Google Scholar]
  72. 72. 
    Li P, Kaslan M, Lee S, Yao J, Gao Z. 2017. Progress in exosome isolation techniques. Theranostics 7:3789–804
    [Google Scholar]
  73. 73. 
    Salih M, Zietse R, Hoorn EJ. 2014. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am. J. Physiol. Ren. Physiol. 306:F1251–59
    [Google Scholar]
  74. 74. 
    Taylor DD, Zacharias W, Gercel-Taylor C. 2011. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol. Biol. 728:235–46
    [Google Scholar]
  75. 75. 
    Ding M, Wang C, Lu X, Zhang C, Zhou Z et al. 2018. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem. 410:3805–14
    [Google Scholar]
  76. 76. 
    Whiteside TL. 2016. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines 4:35
    [Google Scholar]
  77. 77. 
    Ayala-Mar S, Donoso-Quezada J, Gallo-Villanueva RC, Perez-Gonzalez VH, Gonzalez-Valdez J. 2019. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 40:3036–49
    [Google Scholar]
  78. 78. 
    Wijerathne H, Witek MA, Jackson JM, Brown V, Hupert ML et al. 2020. Affinity enrichment of extracellular vesicles from plasma reveals mRNA changes associated with acute ischemic stroke. Commun. Biol. 3:613
    [Google Scholar]
  79. 79. 
    Zhang P, He M, Zeng Y. 2016. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16:3033–42
    [Google Scholar]
  80. 80. 
    Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. 2014. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14:1891–900
    [Google Scholar]
  81. 81. 
    Reategui E, van der Vos KE, Lai CP, Zeinali M, Atai NA et al. 2018. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 9:175
    [Google Scholar]
  82. 82. 
    Dudani JS, Gossett DR, Tse HT, Lamm RJ, Kulkarni RP, Carlo DD. 2015. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9:014112
    [Google Scholar]
  83. 83. 
    Liu C, Guo J, Tian F, Yang N, Yan F et al. 2017. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 11:6968–76
    [Google Scholar]
  84. 84. 
    Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH et al. 2017. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. PNAS 114:10584–89
    [Google Scholar]
  85. 85. 
    Zhang P, Zhou X, He M, Shang Y, Tetlow AL et al. 2019. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3:438–51
    [Google Scholar]
  86. 86. 
    Zhao Z, Yang Y, Zeng Y, He M. 2016. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489–96
    [Google Scholar]
  87. 87. 
    He M, Crow J, Roth M, Zeng Y, Godwin AK. 2014. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–80
    [Google Scholar]
  88. 88. 
    Kang YT, Purcell E, Palacios-Rolston C, Lo TW, Ramnath N et al. 2019. Isolation and profiling of circulating tumor-associated exosomes using extracellular vesicular lipid-protein binding affinity based microfluidic device. Small 15:e1903600
    [Google Scholar]
  89. 89. 
    Woo HK, Sunkara V, Park J, Kim TH, Han JR et al. 2017. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano 11:1360–70
    [Google Scholar]
  90. 90. 
    Ko J, Carpenter E, Issadore D. 2016. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 141:450–60
    [Google Scholar]
  91. 91. 
    Becker H. 2009. It's the economy…. Lab Chip 9:2759–62
    [Google Scholar]
  92. 92. 
    Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S et al. 2014. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip 14:106–17
    [Google Scholar]
  93. 93. 
    O'Neil CE, Jackson JM, Shim SH, Soper SA. 2016. Interrogating surface functional group heterogeneity of activated thermoplastics using super-resolution fluorescence microscopy. Anal. Chem. 88:3686–96
    [Google Scholar]
  94. 94. 
    O'Neil CE, Taylor S, Ratnayake K, Pullagurla S, Singh V, Soper SA. 2016. Characterization of activated cyclic olefin copolymer: effects of ethylene/norbornene content on the physiochemical properties. Analyst 141:6521–32
    [Google Scholar]
  95. 95. 
    Lee K, Shao H, Weissleder R, Lee H. 2015. Acoustic purification of extracellular microvesicles. ACS Nano 9:2321–27
    [Google Scholar]
  96. 96. 
    Gyorgy B, Szabo TG, Pasztoi M. 2011. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68:2667–88
    [Google Scholar]
  97. 97. 
    Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282:1–23
    [Google Scholar]
  98. 98. 
    Chen Y, Liu Q, Guo D. 2020. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92:418–23
    [Google Scholar]
  99. 99. 
    CDC 2020. CDC 2019-Novel Coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel Rep., Cent. Dis. Control Prev. Atlanta, GA: https://www.fda.gov/media/134922/download
  100. 100. 
    Ma L, Zeng F, Cong F, Huang B, Huang R et al. 2019. Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus. J. Virol. Methods 265:66–70
    [Google Scholar]
  101. 101. 
    To KK-W, Tsang OT-Y, Yip CC-Y, Chan K-H, Wu T-C et al. 2020. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 71:841–43
    [Google Scholar]
  102. 102. 
    Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. 2020. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46:586–90
    [Google Scholar]
  103. 103. 
    Li F. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–68
    [Google Scholar]
  104. 104. 
    Wang S, Ai Z, Zhang Z, Tang M, Zhang N et al. 2020. Simultaneous and automated detection of influenza A virus hemagglutinin H7 and H9 based on magnetism and size mediated microfluidic chip. Sens. Actuators B Chem. 308:127675
    [Google Scholar]
  105. 105. 
    Lien K-Y, Lin J-L, Liu C-Y, Lei H-Y, Lee G-B. 2007. Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7:86875
    [Google Scholar]
  106. 106. 
    Shafagati N, Narayanan A, Baer A, Fite K, Pinkham C et al. 2013. The use of NanoTrap particles as a sample enrichment method to enhance the detection of Rift Valley fever virus. PLOS Negl. Trop. Dis. 7:e2296
    [Google Scholar]
  107. 107. 
    Song Y, Song J, Wei X, Huang M, Sun M et al. 2020. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92:9895–900
    [Google Scholar]
  108. 108. 
    Jeon G, Jee M, Yang SY, Lee B-Y, Jang SK, Kim JK. 2014. Hierarchically self-organized monolithic nanoporous membrane for excellent virus enrichment. ACS Appl. Mater. Interfaces 6:1200–6
    [Google Scholar]
  109. 109. 
    Xia Y, Tang Y, Yu X, Wan Y, Chen Y et al. 2017. Label-free virus capture and release by a microfluidic device integrated with porous silicon nanowire forest. Small 13:1603135
    [Google Scholar]
  110. 110. 
    Yeh Y-T, Tang Y, Sebastian A, Dasgupta A, Perea-Lopez N et al. 2016. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv. 2:e1601026
    [Google Scholar]
  111. 111. 
    Grom F, Kentsch J, Müller T, Schnelle T, Stelzle M. 2006. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27:1386–93
    [Google Scholar]
  112. 112. 
    Nagy B. 2019. Cell-free nucleic acids in prenatal diagnosis and pregnancy-associated diseases. EJIFCC 30:215–23
    [Google Scholar]
  113. 113. 
    Barrett SLR, Holmes EA, Long DR, Shean RC, Bautista GE et al. 2020. Cell free DNA from respiratory pathogens is detectable in the blood plasma of cystic fibrosis patients. Sci. Rep. 10:6903
    [Google Scholar]
  114. 114. 
    Luis A, Diaz J, Williams R, Wu J, Kinde I, Hecht JR et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40
    [Google Scholar]
  115. 115. 
    Jung K, Fleischhacker M, Rabien A. 2010. Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clin. Chim. Acta 411:1611–24
    [Google Scholar]
  116. 116. 
    Xia S, Huang C-C, Le M, Dittmar R, Du M et al. 2015. Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls. Lung Cancer 90:78–84
    [Google Scholar]
  117. 117. 
    Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470
    [Google Scholar]
  118. 118. 
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R 2012. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820:940–48
    [Google Scholar]
  119. 119. 
    Schwarzenbach H. 2015. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev. Mol. Diagn. 15:1159–69
    [Google Scholar]
  120. 120. 
    Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD et al. 2012. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22
    [Google Scholar]
  121. 121. 
    Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M et al. 2015. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 112:532–38
    [Google Scholar]
  122. 122. 
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST et al. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–82
    [Google Scholar]
  123. 123. 
    Kawikova I, Askenase PW. 2015. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 1617:63–71
    [Google Scholar]
  124. 124. 
    Masyuk AI, Masyuk TV, LaRusso NF. 2013. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol. 59:621–25
    [Google Scholar]
  125. 125. 
    Spanu S, van Roeyen CR, Denecke B, Floege J, Mühlfeld AS. 2014. Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression. PLOS ONE 9:e109631
    [Google Scholar]
  126. 126. 
    Couch Y, Akbar N, Davis S, Fischer R, Dickens AM et al. 2017. Inflammatory stroke extracellular vesicles induce macrophage activation. Stroke 48:2292–96
    [Google Scholar]
  127. 127. 
    Levänen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S et al. 2013. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol. 131:894–903 e8
    [Google Scholar]
  128. 128. 
    Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L et al. 2015. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 36:2635–42
    [Google Scholar]
  129. 129. 
    Yentrapalli R, Merl-Pham J, Azimzadeh O, Mutschelknaus L, Peters C et al. 2017. Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. Int. J. Radiat. Biol. 93:569–80
    [Google Scholar]
  130. 130. 
    Nolte-t'Hoen ENM, van der Vlist EJ, Aalberts M, Mertens HCH, Bosch BJ et al. 2012. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomed. Nanotechnol. Biol. Med. 8:712–20
    [Google Scholar]
  131. 131. 
    Campos-Silva C, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martinez-Piñeiro L et al. 2019. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci. Rep. 9:2042
    [Google Scholar]
  132. 132. 
    Fraikin J-L, Teesalu T, McKenney CM, Ruoslahti E, Cleland AAN. 2011. A high-throughput label-free nanoparticle analyser. Nat. Nanotechnol. 6:308–13
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091520-093931
Loading
/content/journals/10.1146/annurev-anchem-091520-093931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error