Skip to main content

Advertisement

Log in

Temporal organization among pollination systems in a tropical seasonal forest

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Temporal constancy of pollination systems is essential for the maintenance of pollinators through time. Community-level assessment of flowering phenology allows understanding variations across seasons and years and the risks of decoupling flowering and pollinators’ activity. We evaluated flowering patterns and temporal diversity of pollination systems in a tropical seasonal forest. We asked whether the temporal organization of flowering times differs among pollination systems; if there is a constancy of pollination systems through the year, since climate and phylogenies constraint flowering time; if there is a prevalent flowering pattern by pollination system, and if the temporal organization of pollination systems by modularity analyses is coherent with grouping by pre-defined seasons. We characterized 10 pollination systems, examined flowering strategies, climate cues and phylogenetic constraints. Pollination by large-to-medium bees dominated (49.2%), followed by diverse insects (22.1%) and flies (14.7%). The remaining systems represented 14% of species. Flowering occurred year-round for most pollination systems, predominating the seasonal flowering strategy. Flowering patterns ranged from aggregated to nested, and random. Climate affected the flowering of most pollination systems, but there was no phylogeny constraint. Modularity grouped pollination systems differently than rainfall seasonality. Contrasting the expectations of reduced temporal constancy, most systems were present year-round, facilitating the exploitation of floral resources by pollinators. Diversity of pollination systems remained constant despite climate seasonality, indicating that several factors influence the optimum flowering time for pollination in seasonally dry vegetations. Global warming may disrupt phenological patterns and the temporal organization of plant communities, a matter for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and materials availability

Data is available as Supplementary Information.

Code availability

Not applicable.

References

  • Abernethy K, Bush E, Forget PM, Mendoza I, Morellato LPC (2018) Current issues in tropical phenology. Biotropica 50:477–482

    Article  Google Scholar 

  • Aizen MA, Rovere AE (2010) Reproductive interactions mediated by flowering overlap in a temperate hummingbird-plant assemblage. Oikos 119:696–706

    Article  Google Scholar 

  • Aizen MA, Vázquez DP (2006) Flowering phenologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement? Ecography 29:357–366

    Article  Google Scholar 

  • Albor C, Arceo-Gómez G, Parra-Tabla V (2020) Integrating floral trait and flowering time distribution patterns help reveal a more dynamic nature of co-flowering community assembly processes. J Ecol 108:2221–2231

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Armbruster WS (1986) Reproductive interactions between sympatric Dalechampia species: are natural assemblages “random” or organized? Ecology 67:522–533

    Article  Google Scholar 

  • Armbruster WS, Edwards ME, Debevec EM (1994) Character displacement generates assemblage structure of Western Australian triggerplants (Stylidium). Ecology 75:315–329

    Article  Google Scholar 

  • Augspurger CK (1981) Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinator and seed predators on Hybanthus prunifolius (Violaceae). Ecology 62:775–788

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Evol Syst 21:399–422

    Article  Google Scholar 

  • Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland rain forest tree. II. Pollination systems. Am J Bot 72:346–356

    Article  Google Scholar 

  • Bergamo PJ, Streher NS, Wolowski M, Traveset A, Sazima M (2020) Pollination outcomes reveal negative frequency-dependence coupled with interspecific facilitation among plants. Ecol Lett 23:129–139. https://doi.org/10.1111/ele.13415

    Article  PubMed  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bonebrake TC, Ponisio LC, Boggs CL, Ehrlich PR (2010) More than just indicators: a review of tropical butterfly ecology and conservation. Biol Conserv 143:1831–1841

    Article  Google Scholar 

  • Brown KS Jr, Freitas AVL (2002) Butterfly communities of urban forest fragments in Campinas, São Paulo, Brazil: structure, instability, environmental correlates, and conservation. J Insect Conserv 6:217–231

    Article  Google Scholar 

  • Burkle LA, Alarcon R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bo 98:528–538

    Article  Google Scholar 

  • Buzato S, Sazima M, Sazima I (2000) Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica 32:824–841

    Article  Google Scholar 

  • Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R (2010) Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees 24:865–877

    Article  Google Scholar 

  • Castro-Arellano I, Lacher TE, Willig MR Jr, Rangel TF (2010) Assessment of assemblage-wide temporal niche segregation using null models. Method Ecol Evol 1:311–318

    Article  Google Scholar 

  • Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont L, Crawford R, Durant JM, Hughes L, Keatley MR, Low M, Morellato LPC, Poloczanska E, Ruoppolo V, Vanstreels RET, Woehler EJ, Wolfaardt A (2013) Changes in Southern Hemisphere phenology. PlosOne 8:e75514

    CAS  Google Scholar 

  • Cortés-Flores J, Hernández-Esquivel KB, González-Rodríguez A, Ibarra-Manríquez G (2017) Flowering phenology, growth forms and pollination syndromes in a tropical dry forest species: influence of phylogeny and abiotic factors. Am J Bot 104:39–49

    Article  PubMed  Google Scholar 

  • Cortes-Flores J, Cornejo-Tenorio G, Sánchez-Coronado ME, Orozco-Segovia A, Ibarra-Manrıquez G (2020) Disentangling the influence of ecological and historical factors on seed germination and seedling types in a Neotropical dry forest. PLoS ONE 15:e0231526. https://doi.org/10.1371/journal.pone.023152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devy MS, Davidar P (2003) Pollination systems of trees in Kakachi, a mid-elevation wet evergreen forest in Western Ghats, India. Am J Bot 90:50–657

    Article  Google Scholar 

  • Devy MS, Davidar P (2006) Breeding systems and pollination modes of understorey shrubs in a medium elevation wet evergreen forest southern Western Ghats India. Curr Sci 90:838–842

    Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439

    Article  PubMed  Google Scholar 

  • Estes L, Elsen PR, Treuer T, Ahmed L, Caylor K, Chang J, Choi JJ, Ellis EC (2018) The spatial and temporal domains of modern ecology. Nat Ecol Evol 2:819–826

    Article  PubMed  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford, New York

    Google Scholar 

  • Feinsinger P (1987) Effects of plant species on each other’s pollination: is community structure influenced? Trends Ecol Evol 2:123–126

    Article  CAS  PubMed  Google Scholar 

  • Feinsinger P, Linhart YB, Swarm LA, Wolff JA (1979) Aspects of pollination biology of three Erythrina species on Trinidad and Tobago. Ann Mo Bot Gard 66:451–471

    Article  Google Scholar 

  • Feinsinger P, Spears EE, Poole RW (1981) A simple measure of niche breadth. Ecology 62:27–32

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Figueiredo RA, Sazima M (1997) Phenology and pollination ecology of three Brazilian fig species (Moraceae). Bot Acta 110:73–78

    Article  Google Scholar 

  • Frankie GW (1975) Tropical forest phenology and pollinator plant coevolution. In: Gilbert LE, Haven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 192–209

    Chapter  Google Scholar 

  • Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical lowland wet and dry forest sites of Costa Rica. J Ecol 62:881–913

    Article  Google Scholar 

  • Freitas L, Sazima M (2006) Pollination biology in a tropical high-altitude grassland in Brazil: interactions at the community level. Ann Mo Bot Gard 93:465–516

    Article  Google Scholar 

  • Genini J (2011) Sazonalidade e as redes de interações entre planta-polinizador. Unpublished PhD Thesis

  • Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp (Annonaceae) in Brazil. Plant Syst Evol 167:165–187

    Article  Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2018) How are pollination and seed dispersal modes in Cerrado related to stratification? Trends in a cerrado sensu stricto woodland in southeastern Brazil, and a comparison with Neotropical forests. Acta Bot Brasil 32:434–445

    Article  Google Scholar 

  • Guimarães PR Jr (2020) The structure of ecological networks across levels of organization. Annu Rev Ecol Evol Syst 51:433–460

    Article  Google Scholar 

  • Guimarães PR Jr, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513

    Article  Google Scholar 

  • Guimerà R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Statist Mech 2005:P02001

    Article  Google Scholar 

  • Heithaus ER (1974) The role of plant-pollinator interactions in determine community structure. Ann Mo Bot Gard 61:675–691

    Article  Google Scholar 

  • Heithaus ER, Fleming TH, Opler PA (1975) Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology 56:841–854

    Article  Google Scholar 

  • Hussain KJ, Ramesh T, Satpathy KK, Selvanayagam M (2011) Seasonal dynamics of butterfly population in DAE Campus, Kalpakkam, Tamil Nadu, India. J Threatened Taxa 3:1401–1414

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jones CE, Little RJ (1983) Handbook of experimental pollination biology, 3rd edn. Scientific and Academic Editions, New York

    Google Scholar 

  • Johnson SD (2010) The pollination niche and its role in the diversification and maintenance of the southern African flora. Phil Trans R Soc B365499–516. https://doi.org/10.1098/rstb.2009.0243

  • Kang H, Bawa KS (2003) Effects of successional status, habitat, sexual systems, and pollinators on flowering patterns in tropical rain forest trees. Am J Bot 90:865–876

    Article  PubMed  Google Scholar 

  • Kato M (1996) Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. Am J Bot 83:732–743

    Article  Google Scholar 

  • Kato M, Kosaka Y, Kawakita A, Okuyama Y, Kobayashi C, Phimminith T, Thongphan D (2008) Plant–pollinator interactions in tropical monsoon forests in Southeast Asia. Am J Bot 95:1375–1394

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Krömer T (2000) Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biol 2:659–669

    Article  Google Scholar 

  • Kochmer JP, Handel SN (1986) Constraints and competition in the evolution of flowering phenology. Ecol Monog 56:303–325

    Article  Google Scholar 

  • Kress WJ, Beach JH (1994) Flowering plant reproductive systems. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva, ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago, pp 161–182

    Google Scholar 

  • Kühn I, Bierman SM, Durka W, Klotz S (2006) Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phyto 172:127–139

    Article  Google Scholar 

  • Lefebvre V, Villemant C, Fontaine C, Daugeron C (2018) Altitudinal, temporal and trophic partitioning of flower visitors in alpine communities. Sci Rep 8:4706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado IC, Lopes AV (2004) Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Ann Bot 94:365–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruyama PK, Oliveira GM, Ferreira C, Dalsgaard B, Oliveira PE (2013) Pollination syndromes ignored: importance of non-ornithophilous flowers to Neotropical savanna hummingbirds. Naturwissenschaften 100:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1403–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeller DA (2004) Facilitative interactions among plants via shared pollinators. Ecology 85:3289–3301

    Article  Google Scholar 

  • Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501

    Article  CAS  PubMed  Google Scholar 

  • Monteiro BL, Camargo MGG, Loiola PP, Carstensen DW, Gustafson S, Morellato LPC (2021) Pollination of the campo rupestre: a test of hypothesis for an ancient tropical mountain vegetation. Biol J Linn Soc 133:512–530

    Article  Google Scholar 

  • Morellato LPC, Leitão-Filho HF (1996) Reproductive phenology of climbers in a southeastern Brazilian forest. Biotropica 29:180–191

    Article  Google Scholar 

  • Morellato LPC, Rodrigues RR, Leitão-Filho HF, Joly CA (1989) Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Japi, Jundiaí, São Paulo. Rev Bras Bot 12:85–98

    Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic Rain Forest trees: a comparative study. Biotropica 32:811–823

    Article  Google Scholar 

  • Morellato LPC, Camargo MGG, Gressler E (2013) A review of plant phenology in South and Central America. In: Schwartz MD (ed) Phenology: An Integrative Environmental Science. Springer, The Neederlands, pp 91–113

    Chapter  Google Scholar 

  • Morellato LPC, Alberton B, Alvarado ST, Borges BD, Buisson E, Camargo MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP, Mendoza I, Rocha NMWB, Silva TSF, Soares NC, Staggemeier VG, Streher AS, Vargas BC, Peres CA (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72

    Article  Google Scholar 

  • Morellato LPC (1991) Estudo da fenologia de árvores, arbustos e lianas de uma floresta semidecidua no sudeste do Brasil. PhD Thesis, Universidade Estadual de Campinas, Brasil

  • Newstrom LE, Frankie GW, Baker HG (1994a) A new classification for plant phenology based on flowering patterns in lowland tropical forest trees at La Selva, Costa Rica. Biotropica 26:141–159

    Article  Google Scholar 

  • Newstrom LE, Frankie GW, Baker HG, Colwell RK (1994b) Diversity of long-term flowering patterns. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago, pp 142–160

    Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira PE, Gibbs PE (2000) Reproductive biology of woody plants in a cerrado community of Central Brazil. Flora 195:311–329

    Article  Google Scholar 

  • Oliveira PE, Gibbs P (2002) Pollination and reproductive biology in cerrado plant communities. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Columbia University Press, New York, pp 329–347

  • Oliveira PE, Gibbs PE, Barbosa AAA (2004) Moth pollination of woody species in the Cerrados of Central Brazil: a case of so much owed to so few? Plant Syst Evol 245:41–54

    Article  Google Scholar 

  • Ollerton J, Liede-Schumann S, Endress ME, Meve U, Rech AR, Shuttleworth A, Keller HA, Fishbein M, Alvarado-Cárdenas LO, Amorim FW, Bernhardt P, Celep F, Chirango Y, Chiriboga-Arroyo F, Civeyrel L, Cocucci A, Cranmer L, da Silva-Batista IC, de Jager L, Deprá MS, Domingos-Melo A, Dvorsky C, Agostini K, Freitas L, Gaglianone MC, Galetto L, Gilbert M, González-Ramírez I, Gorostiague P, Goyder D, Hachuy-Filho L, Heiduk A, Howard A, Ionta G, Islas-Hernández SC, Johnson SD, Joubert L, Kaiser-Bunbury CN, Kephart S, Kidyoo A, Koptur S, Koschnitzke C, Lamborn E, Livshultz T, Machado IC, Marino S, Mema L, Mochizuki K, Morellato LPC, Mrisha CK, Muiruri EW, Nakahama N, Nascimento VT, Nuttman C, Oliveira PE, Peter CI, Punekar S, Rafferty N, Rapini A, Ren ZX, Rodríguez-Flores CI, Rosero L, Sakai S, Sazima M, Steenhuisen SL, Tan CW, Torres C, Trøjelsgaard K, Ushimaru A, Vieira MF, Wiemer AP, Yamashiro T, Nadia T, Queiroz J, Quirino Z (2019) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Ann Bot 123:311–325

    Article  PubMed  Google Scholar 

  • Phillips RD, Peakall van der Niet RT, Johnson SD (2020) Niche perspectives on plant-pollinator interactions. Trends Plant Sci 25:779–793. https://doi.org/10.1016/j.tplants.2020.03.009

    Article  CAS  PubMed  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Ann Rev Ecol Evol Syst 4:53–74

    Article  Google Scholar 

  • Pleasants JM (1983) Structure of plants and pollinators communities. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 375–393

    Google Scholar 

  • Pombal ECP, Morellato LPC (1995) Polinização por moscas em Dendropanax cuneatum Decne & Planch (Araliaceae) em floresta semidecidua no sudeste do Brasil. Rev Bras Bot 18:157–162

    Google Scholar 

  • Pombal ECP, Morellato LPC (2000) Differentiation of floral color and odor in two fly pollinated species of Metrodorea (Rutaceae) from Brazil. Plant Syst Evol 221:141–156

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination, 1st edn. Timber Press, Portland

    Google Scholar 

  • Ramirez N (2004) Pollination specialization and time of pollination on a tropical Venezuelan plain: variations in time and space. Bot J Linn Soc 145:1–16

    Article  Google Scholar 

  • Ramirez N (2005) Temporal overlap of flowering species with the same pollination agent class: the importance of habitats and life forms. Int J Bot 1:27–33

    Article  Google Scholar 

  • Ramirez N (2006) Temporal variation of pollination classes in a tropical Venezuelan plain: the importance of habitats and life forms. Can J Bot 84:443–452

    Article  Google Scholar 

  • Rarmirez N, Brito Y (1992) Pollination biology in a palm swamp community in the Venezuelan Central Plains. Bot J Linn Soc 10:277–302

    Article  Google Scholar 

  • Rathcke B (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination Biology. Academic Press, Orlando, pp 305–329

    Chapter  Google Scholar 

  • Rathcke B (1988) Flowering phenologies in a shrub community: competition and constraints. J Ecol 76:975–994

    Article  Google Scholar 

  • Real L (1983) Pollination biology, 3rd edn. Academic Press, Florida

    Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 173:388–400

  • Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, Hamid AA, Nakashizuka T (1999) Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. Am J Bot 86:1414–1436

    Article  CAS  PubMed  Google Scholar 

  • Santos MGM, Presley SJ (2010) Niche overlap and temporal activity patterns of social wasps (Hymenoptera: Vespidae) in a Brazilian cashew orchard. Sociobiology 56:121–131

    Google Scholar 

  • Sargent RD, Ackerly DD (2008) Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol 23:123–130. https://doi.org/10.1016/j.tree.2007.11.003

    Article  PubMed  Google Scholar 

  • Sazima I, Buzato S, Sazima M (1996) An assemblage of hummmingbird-pollinated flowers in a montane forest in southeastern Brazil. Bot Acta 109:149–160

    Article  Google Scholar 

  • Sazima M, Buzato S, Sazima I (1999) Bat-pollinated flower assemblages and bat visitors at two Atlantic Forest sites in Brazil. Ann Bot 83:705–712

    Article  Google Scholar 

  • Schemske DW (1981) Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology 62:946–954

    Article  Google Scholar 

  • Selwyn MA, Parthasarathy N (2006) Reproductive traits and phenology of plants in tropical dry evergreen forest on the Coromandel coast of India. Biod Conserv 15:3207–3234

    Article  Google Scholar 

  • Silva CI, Araújo G, Oliveira PEAM (2012) Distribuição vertical dos sistemas de polinização bióticos em áreas de cerrado sentido restrito no Triângulo Mineiro, MG, Brasil. Acta Bot Brasil 26:748–760

    Article  Google Scholar 

  • Staggemeier VA, Diniz-Filho JAF, Morellato LPC (2010) The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). J Ecol 98:1409–1421

    Article  Google Scholar 

  • Staggemeier VG, Diniz Filho JAF, Ziparro V, Gressler E, Castro ER, Mazine F, Costa IR, Lucas E, Morellato LPC (2015) Clade-specific responses regulate phenological patterns in Neotropical Myrtaceae. Perspect. Plant Ecol. Evol. Syst 17:476–490

    Article  Google Scholar 

  • Stiles G (1977) Coadapted competitors: the flowering seasons of hummingbird-pollinated plants in a tropical forest. Science 198:1177–2117

    Article  CAS  PubMed  Google Scholar 

  • Stiles G (1978) Temporal organization of flowering among the hummingbird foodplants of a Tropical Wet Forest. Biotropica 10:194–210

    Article  Google Scholar 

  • Stone GN, Willmer P, Rowe JA (1998) Partitioning of pollinators during flowering in an African Acacia community. Ecology 79:2808–2827

    Article  Google Scholar 

  • Van Dulmen A (2001) Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecol 153:73–85. https://doi.org/10.1023/A:1017577305193

    Article  Google Scholar 

  • van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu Rev Ecol Syst 24:353–377

    Article  Google Scholar 

  • Vargas BC, Gramboni-Guarantini MT, Morellato LPC (2021) Lianas in the Neotropics: state of the art and future perspectives. Trees 35:333–345

    Article  Google Scholar 

  • Waser NM (1978) Interspecific pollen transfer and competition between co-occurring plant species. Oecologia 36:223–236

    Article  PubMed  Google Scholar 

  • Waser NM (1983) Competition for pollinator and floral character differences among sympatric plant species: a review of evidence. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 277–293

    Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183

    Article  Google Scholar 

  • Wheelwright NT (1985) Competition for dispersers, and the timing of flowering and fruiting in a guild of tropical trees. Oikos 44:465–477

    Article  Google Scholar 

  • Wolowski M, Carvalheiro L, Freitas L (2017) Influence of hummingbird-plant interactions on the structuring of plant and hummingbird communities. J Ecol 105:332–344

    Article  Google Scholar 

  • Wright SJ (1996) Phenological responses to seasonality in tropical forest plants. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 440–460

    Chapter  Google Scholar 

  • Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Article  Google Scholar 

  • Zimmerman JK, Wright SJ, Calderón O, Pagan MA, Paton S (2007) Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231–251

    Article  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to HF Leitão Filho for plant identification and Fundação José Pedro de Oliveira for allowing access to the Reserva Municipal de Santa Genebra. We thank VB Zipparro, M Galetti and DW Carstensen for comments on earlier versions of the manuscript and BL Monteiro for help with the final organization of community pollination surveys.

Funding

Financial support:

São Paulo Research Foundation (FAPESP) and Coordenation of High Education (CAPES) Financial code 1). JG received a fellowship from the FAPESP (#2008/54103–7), LPCM received a fellowship from the CAPES and Universidade Estadual de Campinas (Unicamp). PG, MS, IS and LPCM received research productivity fellowships from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

JG, PG and LPCM design the study, LPCM, MS and IS collected the data, JG and PG analysed the data, JG wrote the first draft and all authors contributed and approved the final version.

Corresponding author

Correspondence to Leonor Patrícia Cerdeira Morellato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Tatjana Cornelissen.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genini, J., Guimarães, P.R., Sazima, M. et al. Temporal organization among pollination systems in a tropical seasonal forest. Sci Nat 108, 34 (2021). https://doi.org/10.1007/s00114-021-01744-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-021-01744-y

Keywords

Navigation