Skip to main content

Advertisement

Log in

Assessing flood-induced ecological vulnerability and risk using GIS-based in situ measurements in Bhagirathi sub-basin, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Climate change–induced disasters and anthropogenic influences are making the ecological environment vulnerable. Thus, assessment of ecological vulnerability and risk is essential for devising suitable adaptation and management strategies. The paper makes a concerted effort to analyze flood-induced ecological vulnerability and risk using site-specific parameters in Bhagirathi sub-basin of India. Analytical hierarchy process (AHP) was used to assign weightage to the selected parameters. Association of parameters with vulnerability was examined through multiple regression analysis. Findings revealed that most of the area in eastern, central, and deltaic sub-basin was found under high vulnerability and risk. Disturbance index, rainfall, temperature, SAVI, vegetation type, low biological richness, slope, and NDVI identified the potent factors for high vulnerability to flood, while high inundation was the prime determinant for very high flood risk in the study area. Evaluated findings may be helpful in prioritizing the areas for ecological restoration and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the datasets used in this study have been cited in the manuscript. The layers of biological richness, disturbance index, and vegetation type were obtained from the Biological Information System (BIS), Department of Biotechnology and Department of Space, Indian Institute of Remote Sensing (IIRS). These datasets have been cited in the manuscript. As per agreement with IIRS, the layers cannot be shared with any third party. However, the other datasets will be made available on request to the corresponding author.

References

  • Ahmed R, Sajjad H (2018) Analyzing factors of groundwater potential and its relation with population in the Lower Barpani Watershed, Assam, India. Nat Resour Res 27:503–515. https://doi.org/10.1007/s11053-017-9367-y

    Article  Google Scholar 

  • Akıncı H, Özalp AY, Turgut B (2013) Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron Agric 97:71–82. https://doi.org/10.1016/j.compag.2013.07.006

    Article  Google Scholar 

  • Antwi EK, Boakye-Danquah J, Owusu AB, Loh SK, Mensah R, Boafo YA, Apronti PT (2015) Community vulnerability assessment index for flood prone savannah agro-ecological zone: a case study of Wa West District, Ghana. Weather Clim Extremes 10:56–69. https://doi.org/10.1016/j.wace.2015.10.008

    Article  Google Scholar 

  • Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep 9(1):1–17. https://doi.org/10.1038/s41598-019-38567-x

    Article  Google Scholar 

  • Bartell SM (2008) Ecological risk assessment. In: Jørgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Oxford, UK, pp 1097–1101. https://doi.org/10.1016/B978-008045405-4.00387-6

    Chapter  Google Scholar 

  • Beroya-Eitner MA (2016) Ecological vulnerability indicators. Ecol Indic 60:329–334. https://doi.org/10.1016/j.ecolind.2015.07.001

    Article  Google Scholar 

  • Bhattacharjee K, Behera B (2018) Determinants of household vulnerability and adaptation to floods: empirical evidence from the Indian State of West Bengal. International Journal of Disaster Risk Reduction 31:758–769. https://doi.org/10.1016/j.ijdrr.2018.07.017

    Article  Google Scholar 

  • BIS (2020) Biological Information System. Indian Institute of Remote Sensing (IIRS). National Biodiversity Characterization at Landscape Level, a project jointly sponsored by Department of Biotechnology and Department of Space, Ministry of Science and Technology. https://bis.iirs.gov.in/methodology-and-approach

  • Bozdağ A, Yavuz F, Günay AS (2016) AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ Earth Sci 75(9):813. https://doi.org/10.1007/s12665-016-5558-9

    Article  Google Scholar 

  • Brody SD, Peacock WG, Gunn J (2012) Ecological indicators of flood risk along the Gulf of Mexico. Ecol Indic 18:493–500. https://doi.org/10.1016/j.ecolind.2012.01.004

    Article  Google Scholar 

  • Caffrey MA, Doerner JP (2012) A 7000-Year Record of Environmental Change, Bear Lake, Rocky Mountain National Park, USA. Phys Geogr 33(5):438–456. https://doi.org/10.2747/0272-3646.33.5.438

    Article  Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of forest types of India. Manager of Publications, Government of India, New Delhi

  • Choudri BS, Charabi Y, Ahmed M (2019) Ecological and human health risk assessment. Water Environ Res 91(10):1072–1079. https://doi.org/10.1002/wer.1194

    Article  Google Scholar 

  • Cui L, Zhao Y, Liu J, Han L, Ao Y, Yin S (2018) Landscape ecological risk assessment in Qinling Mountain. Geol J 53:342–351. https://doi.org/10.1002/gj.3115

    Article  Google Scholar 

  • Dai X, Gao Y, He X, Liu T, Jiang B, Shao H, Yao Y (2021) Spatial-temporal pattern evolution and driving force analysis of ecological environment vulnerability in Panzhihua City. Environ Sci Pollut Res 28(6):7151–7166. https://doi.org/10.1007/s11356-020-11013-6

    Article  Google Scholar 

  • Damm M (2010) Mapping social-ecological vulnerability to flooding. Inaugural-Dissertation. Rheinische Friedrich-Wilhelms-Universität Bonn. http://hss.ulb.unibonn.de/diss_online. Accessed on 13th February 2021

  • De Brito MM, Evers M, Höllermann B (2017) Prioritization of flood vulnerability, coping capacity and exposure indicators through the Delphi technique: a case study in Taquari-Antas basin, Brazil. Int J Disaster Risk Reduct 24:119–128. https://doi.org/10.1016/j.ijdrr.2017.05.027

    Article  Google Scholar 

  • De Lange HJ, Sala S, Vighi M, Faber JH (2010) Ecological vulnerability in risk assessment — a review and perspectives. Sci Total Environ 408(18):3871–3879. https://doi.org/10.1016/j.scitotenv.2009.11.009

    Article  Google Scholar 

  • De León V, Carlos J (2006) Vulnerability: a conceptional and methodological review. UNU-EHS. SOURCE: Studies of the University: Research, Counsel, Education, Publication Series of UNU-EHS, No.4/2006

  • Department of Environment (2018) Environmental Department, Govt. of West Bengal. https://www.wb.gov.in/departments-details.aspx?id=D171026152816854&page=Environment. Accessed on 1st December, 2020

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M (2005) Natural disaster hotspots: a global risk analysis. The World Bank. https://doi.org/10.1596/0-8213-5930-4

  • Ding Q, Shan X, Jin X (2020) Ecological footprint and vulnerability of marine capture fisheries in China. Acta Oceanol Sin 39:100–109. https://doi.org/10.1007/s13131-019-1468-y

    Article  Google Scholar 

  • Dutta S, Rehman S, Sahana M, Sajjad H (2021) Assessing forest health using geographical information system based analytical hierarchy process: evidences from southern West Bengal, India. In: Shit P.K., Pourghasemi H.R., Das P., Bhunia G.S. (eds) Spatial Modeling in Forest Resources Management. Environmental Science and Engineering. Springer, Cham. 10.1007/978-3-030-56542-8_3

  • El Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron Disasters 6(1):3

    Article  Google Scholar 

  • Farhan AR, Lim S (2012) Vulnerability assessment of ecological conditions in Seribu Islands, Indonesia. Ocean Coast Manag 65:1–14. https://doi.org/10.1016/j.ocecoaman.2012.04.015

    Article  Google Scholar 

  • Gholami Baghi N, Oldeland J (2019) Do soil-adjusted or standard vegetation indices better predict above ground biomass of semi-arid, saline rangelands in North-East Iran? Int J Remote Sens 40(22):8223–8235. https://doi.org/10.1080/01431161.2019.1606958

    Article  Google Scholar 

  • Ghosh M, Ghosal S (2020) Climate change vulnerability of rural households in flood-prone areas of Himalayan foothills, West Bengal, India. Environ Dev Sustain 23:2570–2595. https://doi.org/10.1007/s10668-020-00687-0

    Article  Google Scholar 

  • Guo B, Fan Y, Yang F, Jiang L, Yang W, Chen S, Gong R, Liang T (2019) Quantitative assessment model of ecological vulnerability of the Silk Road Economic Belt, China, utilizing remote sensing based on the partition–integration concept. Geomatics Nat Hazards Risk 10(1):1346–1366. https://doi.org/10.1080/19475705.2019.1568313

    Article  Google Scholar 

  • Halpern BS, Selkoe KA, Micheli F, Kappel CV (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv Biol 21(5):1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x

    Article  Google Scholar 

  • Hapciuc OE, Romanescu G, Minea I, Iosub M, Enea A, Sandu I (2016) Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). International Journal of Conservation Science 7(2)

  • He L, Shen J, Zhang Y (2018) Ecological vulnerability assessment for ecological conservation and environmental management. J Environ Manag 206:1115–1125. https://doi.org/10.1016/j.jenvman.2017.11.059

    Article  Google Scholar 

  • Hong W, Jiang R, Yang C, Zhang F, Su M, Liao Q (2016) Establishing an ecological vulnerability assessment indicator system for spatial recognition and management of ecologically vulnerable areas in highly urbanized regions: a case study of Shenzhen, China. Ecol Indic 69:540–547. https://doi.org/10.1016/j.ecolind.2016.05.028

    Article  Google Scholar 

  • Hou K, Li X, Zhang J (2015) GIS analysis of changes in ecological vulnerability using a SPCA model in the Loess plateau of Northern Shaanxi, China. Int J Environ Res Public Health 12(4):4292–4305. https://doi.org/10.3390/ijerph120404292

    Article  Google Scholar 

  • Hou K, Tao W, Wang L, Li X (2020) Study on hierarchical transformation mechanisms of regional ecological vulnerability and its applicability. Ecol Indic 114:106343

    Article  Google Scholar 

  • Huang PH, Tsai JS, Lin WT (2009) Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream watershed, Taiwan. Environ Monit Assess 168(1-4):141–158. https://doi.org/10.1007/s10661-009-1098-z

    Article  Google Scholar 

  • Huete A (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. Remote Sens Environ 25:295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Hussain A, Singh G, Rawat GS (2018) Landscape vulnerability assessment using remote sensing and GIS tools in the Indian part of Kailash Sacred Landscape. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences

  • Ippolito A, Sala S, Faber JH, Vighi M (2010) Ecological vulnerability analysis: a river basin case study. Sci Total Environ 408(18):3880–3890. https://doi.org/10.1016/j.scitotenv.2009.10.002

    Article  Google Scholar 

  • Jain P, Ahmed R, Rehman S, Sajjad H (2020) Detecting disturbed forest tracts in the Sariska Tiger Reserve, India, using forest canopy density and fragmentation models. Modeling Earth Systems and Environment 6(3):1373–1385

    Article  Google Scholar 

  • Jan Wesner Childs (2020) Tropical Cyclone Amphan Leaves Behind Ecological, Humanitarian Disaster in Sundarban Mangroves. https://weather.com/news/news/2020-06-02-sundarban-mangroves-cyclone-amphan-devastation#:~:text=The%20storm%20inundated%20many%20areas,and%20trigger%20erosion%20of%20islands.%22. Accessed on 30th November, 2020

  • Jha VC, Bairagya H (2011) Environmental impact of flood and their sustainable management in deltaic region of West Bengal, India. Caminhos de Geografia 12(39)

  • Jongman B, Kreibich H, Apel H, Barredo JI, Bates PD, Feyen L, Gericke A, Neal J, Aerts JCJH, Ward PJ (2012) Comparative flood damage model assessment: towards a European approach. Nat Hazards Earth Syst Sci 12(12):3733–3752. https://doi.org/10.5194/nhess-12-3733-2012

    Article  Google Scholar 

  • Kan AK, Li GQ, Yang X, Zeng YL, TesrenL HJ (2018) Ecological vulnerability analysis of Tibetan towns with tourism-based economy: a case study of the Bayi District. J Mt Sci 15(5):1101–1114. https://doi.org/10.1007/s11629-017-4789-x

    Article  Google Scholar 

  • Kanani-Sadat Y, Arabsheibani R, Karimipour F, Nasseri M (2019) A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J Hydrol 572:17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Kefalas G, Lattas P, Xofis P, Lorilla RS, Martinis A, Poirazidis K (2018) The use of vegetation indices and change detection techniques as a tool for monitoring ecosystem and biodiversity integrity. International Journal of Sustainable Agricultural Management and Informatics 4(1):47–67. https://doi.org/10.1504/IJSAMI.2018.092411

    Article  Google Scholar 

  • Kling MM, Auer SL, Comer PJ, Ackerly DD, Hamilton H (2020) Multiple axes of ecological vulnerability to climate change. Glob Chang Biol 26(5):2798–2813. https://doi.org/10.1111/GCB.15008

    Article  Google Scholar 

  • Liu Q, Shi T (2019) Spatiotemporal differentiation and the factors of ecological vulnerability in the Toutun river Basin based on remote sensing data. Sustainability 11(15):4160. https://doi.org/10.3390/su11154160

    Article  Google Scholar 

  • Liu G, Wang J, Li S, Li J, Duan P (2019) Dynamic evaluation of ecological vulnerability in a lake watershed based on RS and GIS technology. Pol J Environ Stud 28:1785–1798. https://doi.org/10.15244/pjoes/89981

    Article  Google Scholar 

  • Maikhuri RK, Nautiyal A, Jha NK, Rawat LS, Maletha A, Phondani PC, Bahuguna YM, Bhatt GC (2017) Socio-ecological vulnerability: assessment and coping strategy to environmental disaster in Kedarnath valley, Uttarakhand, Indian Himalayan Region. Int J Disaster Risk Reduct 25:111–124. https://doi.org/10.1016/j.ijdrr.2017.09.002

    Article  Google Scholar 

  • Malanson GP, Alftine KJ (2016) Ecological impacts of climate change. Biological and Environmental Hazards, Risks, and Disasters, 397–426. doi:10.1016/b978-0-12-394847-2.00022-x. In Biological and Environmental Hazards, Risks, and Disasters. [Eds.] Shroder, J. F. and Sivanpillai, R. Elsevier publication. ISBN 978-0-12-394847-2

  • Malekmohammadi B, Jahanishakib F (2017) Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol Indic 82:293–303. https://doi.org/10.1016/j.ecolind.2017.06.060

    Article  Google Scholar 

  • Malhi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N (2020) Climate change and ecosystems: threats, opportunities and solutions. Royal Society, Print ISSN:0962-8436, Online ISSN:1471-2970. 10.1098/rstb.2019.0104

  • Mandal VP, Rehman S, Ahmed R, Masroor M, Kumar P, Sajjad H (2020) Land suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP Spatial Information Research, 1-11.

  • Mekonnen Z, Woldeamanuel T, Kassa H (2019) Socio-ecological vulnerability to climate change/variability in central rift valley, Ethiopia. Adv Clim Chang Res 1:9–20. https://doi.org/10.1016/j.accre.2019.03.002

    Article  Google Scholar 

  • Mukherjee N, Siddique G, Basak A, Roy A, Mandal MH (2019) Climate change and livelihood vulnerability of the local population on Sagar Island, India. Chin Geogr Sci 29(3):417–436. https://doi.org/10.1007/s11769-019-1042-2

    Article  Google Scholar 

  • Nandy S, Singh C, Das KK, Kingma NC, Kushwaha SPS (2015) Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecol Indic 57:182–195. https://doi.org/10.1016/j.ecolind.2015.04.024

    Article  Google Scholar 

  • Nasiri H, Yusof MJM, Ali TAM (2016) An overview to flood vulnerability assessment methods. Sustainable Water Resources Management 2(3):331–336. https://doi.org/10.1007/s40899-016-0051-x

    Article  Google Scholar 

  • Nguyen KA, Liou YA, Tran HP, Hoang PP, Nguyen TH (2020) Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog Earth Planet Sci 7(1):1–16. https://doi.org/10.1186/s40645-019-0311-0

    Article  Google Scholar 

  • Ofosu SA, Adjei KA, Odai SN (2020) Ecological vulnerability of the Densu river Basin due to land use change and climate variability. Cogent Eng 7(1):1735714. https://doi.org/10.1080/23311916.2020.1735714

    Article  Google Scholar 

  • Olmos-Trujillo E, González-Trinidad J, Júnez-Ferreira H, Pacheco-Guerrero A, Bautista-Capetillo C, Avila-Sandoval C, Galván-Tejada E (2020) Spatio-temporal response of vegetation indices to rainfall and temperature in a semiarid region. Sustainability 12(5):1939. https://doi.org/10.3390/su12051939

    Article  Google Scholar 

  • OPDM- Office of Disaster Preparedness and Management (2013) Vulnerability and Risk. Government of the Republic of Trinidad and Tobago. http://www.odpm.gov.tt/node/162. Accessed on 30 November, 2020

  • Parry JA, Ganaie SA, Bhat MS (2018) GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. Journal of Urban Management 7(2):46–56. https://doi.org/10.1016/j.jum.2018.05.002

    Article  Google Scholar 

  • Pastor E (2018) Introduction to the special issue on “vulnerability and resilience of socio-ecological systems”. Nat Resour Model 31:e12185. https://doi.org/10.1111/nrm.12185

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510. https://doi.org/10.1016/j.tree.2005.05.011

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Qiao Z, Yang X, Liu J, Xu X (2013) Ecological vulnerability assessment integrating the spatial analysis technology with algorithms: a case of the wood-grass ecotone of northeast China. In Abstract and Applied Analysis (Vol. 2013). Hindawi. 10.1155/2013/207987

  • Raheem N, Cravens AE, Cross MS, Crausbay S, Ramirez A, McEvoy J, Zoanni D, Bathke DJ, Hayes M, Carter S, Rubenstein M (2019) Planning for ecological drought: Integrating ecosystem services and vulnerability assessment. Wiley Interdiscip Rev Water 6(4):e1352. https://doi.org/10.1002/wat2.1352

    Article  Google Scholar 

  • Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, Shufeng T (2019) Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ 3(3):585–601. https://doi.org/10.1007/s41748-019-00123-y

    Article  Google Scholar 

  • Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8(9):7059–7071. https://doi.org/10.1007/s12517-014-1668-4

    Article  Google Scholar 

  • Rana IA, Routray JK (2018) Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Nat Hazards 91(1):239–266. https://doi.org/10.1007/s11069-017-3124-8

    Article  Google Scholar 

  • Rehman S, Sahana M, Hong H, Sajjad H, Ahmed BB (2019) A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research. Nat Hazards 96(2):975–998. https://doi.org/10.1007/s11069-018-03567-z

    Article  Google Scholar 

  • Roy PS, Kushwaha SPS, Roy A, Karnataka H, Saran S (2013) Biodiversity characterization at landscape level using geospatial model. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto–SBSR, Foz do Iguacu, PR, Brasil, 3321-3328.

  • Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S (2015) New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://doi.org/10.1016/j.jag.2015.03.003

    Article  Google Scholar 

  • Saaty TL (1989) Group Decision Making and the AHP. In: Golden BL, Wasil EA, Harker PT (eds) The Analytic Hierarchy Process. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50244-6_4

    Chapter  Google Scholar 

  • Sahana M, Rehman S, Paul AK, Sajjad H (2019) Assessing socio-economic vulnerability to climate change-induced disasters: evidence from Sundarban Biosphere Reserve, India. Geology, Ecology, and Landscapes 1-13. 10.1080/24749508.2019.1700670

  • Sahana M, Rehman S, Ahmed R, Sajjad H (2020) Analyzing climate variability and its effects in Sundarban Biosphere Reserve, India: reaffirmation from local communities. Environ Dev Sustain 23:1–28. https://doi.org/10.1007/s10668-020-00682-5

    Article  Google Scholar 

  • Sam K, Chakma N (2018) Vulnerability profiles of forested landscape to climate change in Bengal Duars region, India. Environ Earth Sci 77(12):459. https://doi.org/10.1007/s12665-018-7649-2

    Article  Google Scholar 

  • Sanyal J, Lu XX (2005) Remote sensing and GIS-based flood vulnerability assessment of human settlements: a case study of Gangetic West Bengal, India. Hydrological Processes: An International Journal 19(18):3699–3716. https://doi.org/10.1002/hyp.5852

    Article  Google Scholar 

  • Scheuer S, Haase D, Meyer V (2011) Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazards 58:731–751. https://doi.org/10.1007/s11069-010-9666-7

    Article  Google Scholar 

  • Schneider S, Sarukhan J, Adejuwon J, Azar C, Baethgen W, Hope C, Moss R, Leary N, Richels R, Van Ypersele JP (2001) Overview of impacts, adaptation, and vulnerability to climate change. Climate Change:75–103

  • Sebesvari Z, Renaud FG, Haas S, Tessler Z, Hagenlocher M, Kloos J, Szabo S, Tejedor A, Kuenzer C (2016) A review of vulnerability indicators for deltaic social–ecological systems. Sustain Sci 11(4):575–590

    Article  Google Scholar 

  • Shinn JE (2018) Toward anticipatory adaptation: transforming social-ecological vulnerabilities in the Okavango Delta, Botswana. Geogr J 184(2):179–191. https://doi.org/10.1111/geoj.12244

    Article  Google Scholar 

  • Sholihah Q, Kuncoro W, Wahyuni S, Suwandi SP, Feditasari ED (2020) The analysis of the causes of flood disasters and their impacts in the perspective of environmental law. In IOP Conference Series: Earth and Environmental Science (Vol. 437, No. 1, p. 012056). IOP Publishing

  • Shukla R, Chakraborty A, Joshi PK (2017) Vulnerability of agro-ecological zones in India under the earth system climate model scenarios. Mitigation Adapt. Strategies Global Change 22(3):399–425. https://doi.org/10.1007/s11027-015-9677-5

    Article  Google Scholar 

  • Singh Gurvinder (2020) India, the brutal effects of Cyclone Amphan in West Bengal won’t fade quickly. https://www.lifegate.com/cyclone-amphan-west-bengal. Accessed on 30th November, 2020

  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2020) GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int 35(9):991–1017. https://doi.org/10.1080/10106049.2019.1566405

    Article  Google Scholar 

  • Stokes A, Norris JE, Van Beek LPH, Bogaard T, Cammeraat E, Mickovski SB, Jenner A, Di Iorio A, Fourcaud T (2008) How vegetation reinforces soil on slopes. Slope Stability and Erosion Control: Ecotechnological Solutions 65–118. doi:10.1007/978-1-4020-6676-4_4

  • Suter GW, Norton SB (2019) Ecological Risk Assessment, Editor(s): Brian Fath, Encyclopedia of Ecology (Second Edition), Elsevier, 2019, p. 402-406. ISBN 9780444641304. DOI: 10.1016/B978-0-12-409548-9.11137-6

  • Szabó S, Gacsi Z, Balázs B (2016) Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Acta Geographica Debrecina Landscape & Environment 10(3-4):194–202. https://doi.org/10.21120/LE/10/3-4/13

    Article  Google Scholar 

  • Szewrański S, Świąder M, Kazak JK, Tokarczyk-Dorociak K, van Hoof J (2018) Socio-environmental vulnerability mapping for environmental and flood resilience assessment: the case of ageing and poverty in the city of Wrocław, Poland. Integr Environ Assess Manag 14(5):592–597. https://doi.org/10.1002/ieam.4077

    Article  Google Scholar 

  • Thiault L, Marshall P, Gelcich S, Collin A, Chlous F, Claudet J (2018) Mapping social–ecological vulnerability to inform local decision making. Conserv Biol 32(2):447–456

    Article  Google Scholar 

  • Thiault L, Gelcich S, Marshall N, Marshall P, Chlous F, Claudet J (2020) Operationalizing vulnerability for social–ecological integration in conservation and natural resource management. Conserv Lett 13(1):e12677. https://doi.org/10.1111/conl.12677

    Article  Google Scholar 

  • Ul Hasan MS, Rai AK (2020) Groundwater quality assessment in the lower Ganga Basin using entropy information theory and GIS. J Clean Prod 274:123077. https://doi.org/10.1016/j.jclepro.2020.123077

    Article  Google Scholar 

  • UNDP- United Nations Development Programme (2010) Disaster Risk Assessment. Bureau for Crisis Prevention and Recovery. www.undp.org/cpr/we_do/disaster_global_risk_id.shtml. Accessed on 28th November, 2020

  • Upgupta S, Sharma J, Jayaraman M, Kumar V, Ravindranath NH (2015) Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: a case study of Himachal Pradesh, India. Clim Risk Manag 10:63–76. https://doi.org/10.1007/s11027-015-9677-5

    Article  Google Scholar 

  • Vanneuville W, Wolters H, Scholz M, Uhel R (2016) Flood risks and environmental vulnerability-exploring the synergies between floodplain restoration, water policies and thematic policies. EEA Report, (1/2016). https://www.eea.europa.eu/publications/flood-risks-and-environmental-vulnerability. Accessed on 12th February 2021

  • Weißhuhn P, Müller F, Wiggering H (2018) Ecosystem vulnerability review: proposal of an interdisciplinary ecosystem assessment approach. J Environ Manag 61(6):904–915. https://doi.org/10.1007/s00267-018-1023-8

    Article  Google Scholar 

  • WRIS (2014) Ganga Basin, Digital watershed atlas by the joint venture of Central Water Commission, Ministry of Water Resources and National Remote Sensing Centre (NRSC) Hyderabad, India. http://environicsindia.in/wp-content/uploads/2018/06/Ganga_Basin.pdf. Accessed on 10th September, 2020

  • Wu C, Liu G, Huang C, Liu Q, Guan X (2018) Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in Yellow River Delta. Int J Environ Res Public Health 15(5):855. https://doi.org/10.3390/ijerph15050855

    Article  Google Scholar 

  • Xenarios S, Sarker GW, Nemes A, Nagothu S, Biswas JC, Maniruzzaman M (2014) Socio-ecological vulnerability assessment of flood and saline-prone region in rural Bangladesh. Bioforsk Rapport

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens 2017:1–17. https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  • Xue L, Wang J, Zhang L, Wei G, Zhu B (2019) Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci Total Environ 649:876–888. https://doi.org/10.1016/j.scitotenv.2018.08.321

    Article  Google Scholar 

  • Yang Y, Ren X, Zhang S, Chen F, Hou H (2017) Incorporating ecological vulnerability assessment into rehabilitation planning for a post-mining area. Environ Earth Sci 76(6):245

    Article  Google Scholar 

  • Yang J, El-Kassaby YA, Guan W (2020) The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-73496-0

    Article  Google Scholar 

  • Yu X, Li Y, Xi M, Kong F, Pang M, Yu Z (2019) Ecological vulnerability analysis of Beidagang National Park, China. Front Earth Sci 13(2):385–397. https://doi.org/10.1007/s11707-018-0726-8

    Article  Google Scholar 

  • Zhang X, Wang C, Li E, Xu C (2014) Assessment model of ecoenvironmental vulnerability based on improved entropy weight method. The Scientific World Journal, 2014

  • Zhang F, Liu X, Zhang J, Wu R, Ma Q, Chen Y (2017a) Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. Ecol Model 349:41–50. https://doi.org/10.1016/j.ecolmodel.2017.01.016

    Article  Google Scholar 

  • Zhang H, Wu J, Gao Y, Chen Z (2017b) Spatial Assessment of ecological vulnerability in Fuzhou District in China using remote sensing and GIS. Nat Environ Pollut Technol 16(4):1303–1312 e-ISSN: 2395-3454

    Google Scholar 

  • Zimmerman JK, Willig MR, Hernández-Delgado EA (2020) Resistance, resilience, and vulnerability of social-ecological systems to hurricanes in Puerto Rico. Ecosphere 11(10):e03159. https://doi.org/10.1002/ecs2.3159

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their constructive comments and suggestions which helped us in improving the quality of the manuscript. The authors are grateful to Dr. Partha Sarathi Roy, NASI senior Scientist, ICRISAT, Pathancheru, Hyderabad, for providing datasets on biological richness, disturbance index, and vegetation types. The authors also wish to thank the Department of Science and Technology (DST), Government of India, New Delhi, for stimulating support and financial assistance during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroon Sajjad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Hasan, M.S.U., Rai, A.K. et al. Assessing flood-induced ecological vulnerability and risk using GIS-based in situ measurements in Bhagirathi sub-basin, India. Arab J Geosci 14, 1520 (2021). https://doi.org/10.1007/s12517-021-07780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07780-2

Keywords

Navigation