Skip to main content
Log in

Induction of meiotic and mitotic gynogenesis in silver barb (Barbonymus gonionotus) through cold shock treatment

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study was dealt with induction of diploid meiotic and mitotic gynogenesis in Barbonymus gonionotus through cold shock treatment for production of monosex all-female population. For inhibition of paternal inheritance, sperm DNA was denatured by exposing cell suspension containing 8×108 ml-1 to UV at 196 μWcm-2 for 1.5 min. After fertilization of eggs using uv-treated sperm, meiotic diploidization was done by cold shock treatment at 2 °C for 1 min applied 1.5 min of post-fertilization that produced 44.23±0.62% meiotic gynogens. Mitotic diploidization was done by the same cold shock treatment applied after 27.5 min of fertilization that produced 36.70±0.63% mitotic gynogens. Ploidy status of all the progenies was evaluated by karyotyping. The karyotype analysis revealed 23 (N) chromosomes in haploids, and 46 (2N) chromosomes in meiotic and mitotic gynogens and controls. Sexing of fish showed nearly all-female, ranging from 98.28 to 100% and 96.43 to 100% female in the meiotic and mitotic gynogens respectively. The sex ratio in the control group was nearly 1:1. DNA microsatellite analysis revealed that the meiotic gynogenetic offspring possessed two alleles the same as their mother and the mitotic gynogenetic offspring possessed any of the two alleles of their mother and became homozygous. No meiotic and mitotic gynogens have inheritance of paternal alleles. The control offspring shared alleles from both male and female parents. Thus, the study confirmed the production of meiotic and mitotic gynogens of silver barb through cold shock treatment and they could be converted into sex-reversed males (XX) by masculinizing hormone treatment for production of monosex all-female population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam MS, Islam MS (2005) Population genetic structure of Catla catla (Hamilton) revealed by microsatellite DNA markers. Aquaculture 246:151–160

    Article  CAS  Google Scholar 

  • Ali A, Rahman MR, Hossain MK, Rashid HA, Hasan KMM, Azad MAK, Shanta SM, Bella MM, Mostary S, Ullah MA (2018) Optimization of stocking density of Thai Sharpunti, Barbonymus gonionotus (Bleeker) in monoculture system. Inter J Fish and Aqua Stud 6(1):13–18

    Google Scholar 

  • Alsaqufi AS, Gomelsky B, Schneider KJ, Pomper KW (2014) Verification of mitotic gynogenesis in ornamental (koi) carp (Cyprinus carpio L.) using microsatellite DNA markers. Aquac Res 45:410–416. https://doi.org/10.1111/j.1365-2109.2012.03242.x

    Article  CAS  Google Scholar 

  • Apriani R, Suryaningsih S, Sistina Y (2016) Success of gynogenesis of silver barb (Barbonymus gonionotus Blkr.) in two UV-irradiation doses (λ 254 nm) with heat shock 40 °C. Biosfera 33(3):116–120

    Google Scholar 

  • Bertotto D, Cepollaro F, Libertini A, Barbaroa A, Francescona A, Belvedereb P, Barbaroa J, Colombob L (2005) Production of clonal founders in the European sea bass, Dicentrarchus labrax L, by mitotic gynogenesis. Aquaculture 246:115–124

    Article  Google Scholar 

  • Chakraborty BK, Miah MI, Mirja MJA, Habib MAB (2006) Induction of gynogenesis in endangered sarpunti, Puntius sarana (Hamilton) and evidence for female homogamety. Aquaculture 258(1-4):312–320

    Article  CAS  Google Scholar 

  • Chourrout D (1984) Pressure induced retention of second polar body and suppression of first cleavage in rainbow trout: production of all-tetraploids and heterozygous and homozygous diploid gynogenetics. Aquaculture 36:111–126

    Article  Google Scholar 

  • Chourrout D (1986) Techniques of chromosome manipulation in rainbow trout: a new evaluation with karyology. Theor and Appl Gene 72:627–632

    Article  CAS  Google Scholar 

  • Chourrout D, Itskovich J (1983) Three manipulations permitted by artificial insemination in tilapia: induced diploid gynogenesis, production of all triploid population and intergeneric hybridisation. In: Fishelson L, Yaron Z (eds) International Symposium on Tilapia in Aquaculture. Nazareth, Israel, pp 246–255

    Google Scholar 

  • Christopher JSG, Marugesan AG, Sukumaran N (2010) Induction of meiotic gynogenesis in the stinging catfish Heteropneustes fossilis (Bloch) and evidence for female homogamety. Aquac Res 42:129–138. https://doi.org/10.1111/j.1365-2109.2010.02593.x

    Article  Google Scholar 

  • DoF (2019) National Fish Week 2019 Compendium (in Bengali). Department of Fisheries, Ministry of Fisheries and Livestock, Bangladesh, p 160

    Google Scholar 

  • Ezaz MT, McAndrew BJ, Penman DJ (2004) Spontaneous diploidization of the maternal chromosome set in Nile tilapia (Oreochromis niloticus L.) eggs. Aquac Res 35:271–277

    Article  Google Scholar 

  • Felip A, Zanuy S, Carrillo M, Martínez G, Ramos J, Piferrer F (1997) Optimal conditions for the induction of triploidy in the sea bass (Dicentrarchus labrax L.). Aquaculture 152:287–298

    Article  Google Scholar 

  • Fopp-Bayat D, Woznicki P (2007) Spontaneous and induced gynogenesis in sterlet Acipenser ruthenus Brandt. Caryologia 60(4):315–318

    Article  Google Scholar 

  • FRSS (2015) Fisheries Statistical Report of Bangladesh. Fisheries Resources Survey System (FRSS). Department of Fisheries, Bangladesh, Vol. 31, p 57

  • Galbusera P, Volckaert FAM, Ollevier F (2000) Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822) III. Induction of endomitosis and the presence of residual genetic variation. Aquaculture 185:25–42

    Article  Google Scholar 

  • Gheyas AA, Mollah MFA, Islam MS, Hussain MG (2001) Cold-shock induction of diploid gynogenesis in stinging catfish, Heteropneustes fossilis. J Appl Aquac 11(4):27–40. https://doi.org/10.1300/J028v11n04_03

    Article  Google Scholar 

  • Guerrero RD, Shelton WL (1974) An aceto-carmine squash method for sexing juvenile fishes. The Prog Fish-Cult 36(1):56–56. https://doi.org/10.1577/1548-8659(1974)36[56:AASMFS]2.0.CO;2

    Article  Google Scholar 

  • Hansen MM, Simonsen V, Mensberg KLD, Sarder MRI, Alam MS (2006) Loss of genetic variation in hatchery-reared Indian major carps, Catla catla. J Fish Biol 69(Supplement B):229–241

    Article  CAS  Google Scholar 

  • Hossain MI, Khatun M, Kamal BMM, Habib KA, Tumpa AS, Subba BR, Hossain MY (2014) Effects of seasonal variation on growth performance of mirror carp (Cyprinus carpio Ver. Specularis) in earthen nursery ponds. Our Nature 12(1):8–18. https://doi.org/10.3126/on.v12i1.12252

    Article  Google Scholar 

  • Hussain MG (1996) Advancement in chromosome engineering research in fish: review of methods, achievements and applications. Asian Fish Soc 9:45–60

    Google Scholar 

  • Hussain MG, Mazid MA (2001a) Genetic improvement and conservation of carp species in Bangladesh. Published by Bangladesh Fisheries Research Institute and International Aquatic Resources Management, 74 p.

  • Hussain MG, Mazid MA (2001b) Aquaculture genetics research in Bangladesh, p. 7-14. In Gupta MV, Acosta BO (eds) Fish genetics research in member countries and institutions of the International Network on Genetics in Aquaculture. ICLARM Conf. Proc. 64, 179 p.

  • Hussain MG, Mahata MS, Rahman MS, Tanu MB, Mazid MA, Islam MS (1997) Induction of mitotic and meiotic gynogenesis and production of genetic clones in rohu, (Labeo rohita Ham.). Bangladesh J Fish Res 1(2):1–8

    Google Scholar 

  • Hussain MG, Islam MS, Hossain MA, Wahid MI, Kohinoor AHM, Dey MM, Mazid MA (2002) Stock improvement of silver barb (Barbodes gonionotus Bleeker) through several generations of genetic selection. Aquaculture 204(3):469–480

    Article  Google Scholar 

  • Hussay K, Coad JO, Farrel ED, Clausen LW, Clarke MW (2012) Sexual dimorphism in size, age, maturation, and growth characteristics of boarfish (Capros aper) in the Northeast Atlantic. ICES J Maine Sci 69(10): 1729–1735.

  • John G, Reddy PVGK, Gupta SD (1984) Artificial gynogenesis in two Indian major carps, Labeo rohita and Catla catla. Aquaculture 42:161–168

    Article  Google Scholar 

  • Khan TA, Bise MP, Lakra WS (2000) Chromosome manipulation in fish- a review. Indian J Anim Sci 70(2):213–221

    Google Scholar 

  • Kligerman AD, Bloom SE (1977) Rapid chromosome preparation from solid tissues of fishes. J Fish Res Board Can 34:266–269

    Article  Google Scholar 

  • Koedprang W, Na-Nakorn U (2000) Preliminary study on performance of triploid Thai silver barb (Puntius gonionotus). Aquaculture 190(3-4):211–221

    Article  Google Scholar 

  • Kohinoor AHM, Islam MS, Begum M, Hussain MG (2008) Growth performance evaluation of genetically improved silver barb (Barbonymus gonionotus Bleeker) in different agro-ecological zones in Bangladesh. Bangladesh Fish Res 12(2):129–134

    Google Scholar 

  • Krasznai ZI, Marian T (1986) Induced gynogenesis on European catfish (Silurus glanis L.) In: Tiews, K. (Ed.), Proc. World Symposium on Selection, Hybridization, and Genetic Engineering in Aquaculture, Bordeaux, Berlin Vol. II, 27-30 May 1987.

  • Li YY, Cai MY, Wang ZY, Guo W, Liu XD, Wang XQ, Ning Y (2008) Microsatellite –centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families. Mar Biotechnol 10:83–90

    Article  CAS  Google Scholar 

  • Liu SJ, Qin QB, Wang YQ, Zhang H, Zhao RR, Zhang C, Wang J, Li W, Chen L, Xiao J, Luo KK, Tao M, Duan W, Liu Y (2010) Evidence for the formation of the male gynogenetic fish. Marine Biotech 12:160–172

    Article  CAS  Google Scholar 

  • Mair GC, Scott AG, Penman DJ, Skibinski DOF, Beardmore JA (1991) Sex determination in the genus Oreochromis 2. Sex reversal, hybridization, gynogenesis and triploidy in O. aureus Steindachner. Theor and Appl Gene 82:153–160

    Article  CAS  Google Scholar 

  • Manan H, Hidayati ABN, Lyana NA, Amin-Safwan A, Ma H, Kasan, NA, Ikhwanuddin (2020) A review of gynogenesis manipulation in aquatic animals. Aquaculture and Fisheries. Hidayah Manan, Aquaculture and Fisheries, https://doi.org/10.1016/j.aaf.2020.11.006

  • Marx KK (2011) Induction of diploid gynognesis in the catfish, Clarias batrachus (Linnaeus, 1758) using cold shock technique. Indian J Fish 58(1):99–101

    Google Scholar 

  • McConnell SKJ, Skibinski DOF, Mair GC (2001) Microsatellite markers from a commercially important South-east Asian cyprinid, the silver barb (Barbodes gonionotus Bleeker). Mol Ecol Notes 1:135–136

    Article  CAS  Google Scholar 

  • McCormick MI, Ryen CA, Munday PL, Walker SPW (2010) Differing mechanisms underlie sexual size-dimorphism in two populations of a sex-changing fish. PLoS One 5(5):e10616. https://doi.org/10.1371/journal.pone.0010616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza JA, Shelton WL (1988) Induction of gynogenesis and sex reversal in silver carp. Aquaculture 68:1–14

    Article  Google Scholar 

  • Na-Nakom U, Rangsin W, Witchasunkul S (1993) Suitable conditions for induction of gynogenesis in the catfish, Clarias macrocephalus, using sperm of Pangasius sutchi. Aquaculture 118:53–62

    Article  Google Scholar 

  • Ottera BH, Thorsen A, Peruzzi S, Dahle G, Hansen T, Karlsen O (2011) Induction of meiotic gynogenesis in Atlantic cod, Gadus morhua (L.). J Appl Ichthyol 27(6):1298–1302

    Article  Google Scholar 

  • Padilla IES, Eizaguirre C, Scharsack JP, Lenz LP, Milinski M (2011) Induction of diploid gynogenesis in an evolutionary model organism, the three-spined stickleback (Gasterosteus aculeatus). BMC Dev Biol 11:55 http://www.biomedcentral.com/1471-213X/11/55

    Article  CAS  Google Scholar 

  • Pandian TJ, Koteeswaran R (1998) Ploidy induction and sex control in fish. Hydrobiologia 384:167–243

    Article  Google Scholar 

  • Pongthana N, Penman DJ, Karnasuta J, McAndrew BJ (1995) Induced gynogenesis in the silver barb (Puntius gonionotus Bleeker) and evidence for female homogamety. Aquaculture 33:287–300

    Google Scholar 

  • Pongthana N, Penman DJ, Baoprasertkul P, Hussain MG, Islam MS, Powel SF, McAndrew BJ (1999) Monosex female production in the silver barb (Puntius gonionotus Bleeker). Aquaculture 173(4):247–256

    Article  Google Scholar 

  • Purdom CE (1983) Genetic engineering by the manipulation of chromosome. Aquaculture 135(4):267–276

    Google Scholar 

  • Rahman MA, Mazid MA, Rahman MR, Khan MN, Hossain MA, Hussain MG (2005) Effect of stocking density on survival and growth of critically endangered mahseer, Tor putitora (Hamilton) in nursery ponds. Aquaculture 249:275–284

    Article  Google Scholar 

  • Rahman MR, Sarder Md RI, Nishat AA, Islam R (2019) Induction of diploid gynogenesis by heat shock treatment in silver barb (Barbonymus gonionotus). Aquaculture 505:297–305

    Article  Google Scholar 

  • Roongratri N, Vipudthanumas T (1991) Production of all female Thai silver barbs by means of gynogenesis diploid induction. Thai Fish Gaz 44:515–527 (in Thai)

    Google Scholar 

  • Sandra G-E, Norma M-M (2010) Sexual determination and differentiation in teleost fish. Rev Fish Biol Fish 20:101–121

    Article  Google Scholar 

  • Sarachat U, Chitmanat C, Hunsapruerke K, Rojtinnakorn J (2015) Cloning of red tilapia pathumthanee 1 by gynogenesis and androgenesis for breeding management with non-hormone strategy. World Aquaculture Society: World Aquaculture 2015-presentation. https://www.was.org/meetings/ShowAbstract.aspx

  • Sarder MRI, Penman DJ, Myers JM, McAndrew BJ (1999) Production and propagation of fully inbred clonal lines in the Nile tilapia (Oreochromis niloticus L.). J Exp Zool 284:675–685

    Article  CAS  PubMed  Google Scholar 

  • Shelton WL (1987) Genetic manipulations-sex control of exotic fish for stocking. In: Tiews K (ed) Proceedings of World Symposium on Selection, Hybridization and Genetic Engineering in Aquaculture, Heeneman, vol II. Berlin, Germany, pp 175–197

    Google Scholar 

  • Simonsen V, Hansen MM, Sarder MRI, Alam MS (2004) High level hybridization in three species of Indian major carps. The North American Grappling Association, Worldfish Centre Quarterly 27(1-2):65–69

    Google Scholar 

  • Simonsen V, Hansen MM, Sarder MRI, Alam MS (2005) Widespread hybridization among species of Indian major carps in hatcheries but not in the wild. J Fish Biol 67:794–808

    Article  CAS  Google Scholar 

  • Thorgaard GH (1983) Chromosome set manipulation and sex control in fish. In: Hoar WS, Randal DJ, Donaldson EM (eds) Fish physiology IX. Academic Press, New York, pp 405–435

    Google Scholar 

  • Thorgaard HG, Allendof FW, Knusden KL (1983) Gene-centromere mapping in rainbow trout: high interference over long map distances. Genetics 103:771–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonny US, Al Faroque A, MRI S, MFA M (2014) Assessment of genetic variation of wild rohu Labeo rohita (Hamilton 1822) populations using microsatellite markers. African J Fish Sci 2(9):168–175

    Google Scholar 

  • Volckaert FAM, Galbusera PHA, Hellemans BAS, den Haute CV, Vanstaen D, Ollevier F (1994) Gynogenesis in the African catfish (Clarias gariepinus). I. Induction of meiogynogenesis with thermal and pressure shocks. Aquaculture 128:221–233

    Article  Google Scholar 

  • Waldbieser GC, Bosworth BG, Quiniou SM (2010) Production of viable homozygous, doubled haploid channel catfish (Ictalurus punctatus). Mar Biotechnol 12:380–385

    Article  CAS  Google Scholar 

  • Wichian-Leuangpromporn (1990) Induction of gynogenesis in Clarias macrocephalus gunther. Bangkok (Thailand). p 85.

  • Xiao J, Zou J, Chen TM, Liu L, Xiao SJ, Zhang JH, Long Y, Yan JP, Zhao RRM, Zhang T, You CCP, Liu Y (2011) Microsatellite analysis of different ploidy offspring of artificial gynogenesis in Cyprinus carpio. J Fish Biol 78:150–165

    Article  CAS  PubMed  Google Scholar 

  • Yan JP, Liu SJ, Sun YD, Zhang C, Luo KK, Liu Y (2005) RAPD and microsatellite analysis of diploid gynogens from allotetraploid hybrids of red crucian carp (Carassius auratus) x× common carp (Cyprinus carpio). Aquaculture 243:49–60

    Article  CAS  Google Scholar 

  • You CH, Yu XM, Tan DQ, Tong JG (2008) Gynogenesis and sex determination in large-scale loach Paramisgurnus dabryanus (Sauvage). Aquac Int 16:203–214

    Article  Google Scholar 

  • Zhang H, Liu S, Jhang M, Tao L, Peng C, You J, Xiao Y, Zhou G, Ghou K, Lou, Liu Y (2011) Induced gynogenesis in grass carp (Ctenopharyngodon idellus) using irradiated sperm of allotetraploid hybrids. Mar Biotechnol 13(5):1017–1026

    Article  CAS  Google Scholar 

Download references

Funding

This research project was financially supported by the Bangladesh Academy of Sciences—USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. R. I. Sarder.

Additional information

Handling Editor: Pierre Boudry

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R., Sarder, M.R.I., Nishat, A.A. et al. Induction of meiotic and mitotic gynogenesis in silver barb (Barbonymus gonionotus) through cold shock treatment. Aquacult Int 29, 2161–2179 (2021). https://doi.org/10.1007/s10499-021-00744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00744-z

Keywords

Navigation