Skip to main content
Log in

Maldi-mass Spectrometry Imaging for Phytoalexins Detection in RD6 Thai Rice

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Phytoalexin production has been extensively studied using multiple methods. However, this is the first report on the use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to detect diterpenoid phytoalexins in fungal-infected Thai rice plants. In this study, we successfully detected diterpenoid phytoalexins in RD6 Thai rice (Oryza sativa). Detection of phytoalexin production and distribution can be used to indicate the resistance properties of RD6 rice to blast disease. First, rice leaves were infected with Magnaporthe oryzae before analysis with MALDI-MSI. Results revealed 5 types of phytoalexins detected on leaf tissue, including momilactone-A (m/z 353.17), momilactone-B (m/z 369.16), phytocassane-A, D, or E (m/z 355.18), phytocassane-B (m/z 373.19) and phytocassane-C (m/z 357.20). MSI data correlated with the results from the MALDI-MS of rice leaf extraction. Finally, the structure of momilactone-A, phytocassane-A, D, or E and phytocassane-C was also determined using the MS/MS technique. Overall, MALDI-MSI is a useful and reliable technique for phytoalexin detection, representing new opportunities for agricultural applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bjarnholt, N., Li, B., D’Alvise, J., and Janfelt, C., Nat. Prod. Rep., 2014, vol. 31, no. 6, pp. 818–837.

    Article  CAS  Google Scholar 

  2. Sturtevant, D., Lee, Y.J., and Chapman, K.D., Curr. Opin. Biotechnol., 2016, vol. 37, pp. 53–60.

    Article  CAS  Google Scholar 

  3. Dong, Y., Li, B., Malitsky, S., Rogachev, I., Aharoni, A., Kaftan, F., Svatoš, A., and Franceschi, P., Front. Plant Sci., 2016, vol. 7, article 60.

    PubMed  PubMed Central  Google Scholar 

  4. Kaspar, S., Peukert, M., Svatos, A., Matros, A., and Mock, H.-P., Proteomics, 2011, vol. 11, no. 9, pp. 1840–1850.

    Article  CAS  Google Scholar 

  5. Svatoš, A., Trends Biotechnol., 2010, vol. 28, no. 8, pp. 425–434.

    Article  Google Scholar 

  6. Amstalden van Hove, E.R., Smith, D.F., and Heeren, R.M.A., J. Chromatogr. A, 2010, vol. 1217, no. 25, pp. 3946–3954.

    Article  CAS  Google Scholar 

  7. Shroff, R., Schramm, K., Jeschke, V., Nemes, P., Vertes, A., Gershenzon, J., and Svatoš, A., Plant J., 2015, vol. 81, no. 6, pp. 961–972.

    Article  CAS  Google Scholar 

  8. Dueñas, M.E., Klein, A.T., Alexander, L.E., Yandeau-Nelson, M.D., Nikolau, B.J., and Lee, Y.J., Plant J., 2017, vol. 89, no. 4, pp. 825–838.

    Article  Google Scholar 

  9. Misiorek, M., Sekuła, J., and Ruman, T., Phytochem. Anal., 2017, vol. 28, no. 6, pp. 479–486.

    Article  CAS  Google Scholar 

  10. Aziz, M., Sturtevant, D., Winston, J., Collakova, E., Jelesko, J.G., and Chapman, K.D., Molecules, 2017, vol. 22, no. 5, pp. 711.

    Article  Google Scholar 

  11. Dalisay, D.S., Kim, K.W., Lee, C., Yang, H., Rübel, O., Bowen, B.P., et al., J. Nat. Prod., 2015, vol. 78, no. 6, pp. 1231–1242.

    Article  CAS  Google Scholar 

  12. Woodfield, H.K., Sturtevant, D., Borisjuk, L., Munz, E., Guschina, I.A., Chapman, K., and Harwood, J.L., Plant Physiol., 2017, vol. 173, no. 4, pp. 1998–2009.

    Article  CAS  Google Scholar 

  13. Klein, A.T., Yagnik, G.B., Hohenstein, J.D., Ji, Z., Zi, J., Reichert, M.D., et al., Anal. Chem., 2015, vol. 87, no. 10, pp. 5294–5301.

    Article  CAS  Google Scholar 

  14. Slazak, B., Kapusta, M., Strömstedt, A.A., Słomka, A., Krychowiak, M., Shariatgorji, M., et al., Front. Plant Sci., 2018, vol. 9, no. 1296.

  15. VanEtten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E., Plant Cell, 1994, vol. 6, no. 9, pp. 1191–1192.

    Article  CAS  Google Scholar 

  16. Müller, K.O. and Borger, H., Arb. Biol. Reichsanst. Land Forstwirtsch., 1940, vol. 23, pp. 189–231.

    Google Scholar 

  17. Ahuja, I., Kissen, R., and Bones, A.M., Trends Plant Sci., 2012, vol. 17, no. 2, pp. 73–90.

    Article  CAS  Google Scholar 

  18. Schmelz, E.A., Huffaker, A., Sims, J.W., Christensen, S.A., Lu, X., Okada, K., and Peters, R.J., Plant J., 2014, vol. 79, no. 4, pp. 659–678.

    Article  CAS  Google Scholar 

  19. Hasegawa, M., Mitsuhara, I., Seo, S., Imai, T., Koga, J., Okada, K., et al., Mol. Plant Microbe Interact., 2010, vol. 23, no. 8, pp. 1000–1011.

    Article  CAS  Google Scholar 

  20. Gnanamanickam, S.S. Biological Control of Rice Diseases, Dordrecht: Springer, 2009.

    Book  Google Scholar 

  21. Khush, G.S., Plant Mol. Biol., 2005, vol. 59, no. 1, pp. 1–6.

    Article  CAS  Google Scholar 

  22. Talbot, N.J., Annu. Rev. Microbiol., 2003, vol. 57, no. 1, pp. 177–202.

    Article  CAS  Google Scholar 

  23. Disthaporn, S., Rice Blast Disease, Zeigler, R.S., Leong, S.A., and Teng, P.S., Eds., Los Banos: IRRI, 1994.

    Google Scholar 

  24. Hammerschmidt, R., Annu. Rev. Microbiol., 1999, vol. 37, no. 1, pp. 285–306.

    CAS  Google Scholar 

  25. Grayer, R.J. and Kokubun, T., Phytochemistry, 2001, vol. 56, no. 3, pp. 253–263.

    Article  CAS  Google Scholar 

  26. Sirithunya, P., Tragoonrung, S., Vanavichit, A., Pa-In, N., Vongsaprom, C., and Toojinda, T., DNA Res., 2002, vol. 9, no. 3, pp. 79–88.

    Article  CAS  Google Scholar 

  27. Wang, S., Uddin, M.I., Tanaka, K., Yin, L., Shi, Z., Qi, Y., et al., Plant Physiol., 2014, vol. 165, no. 3, pp. 1144–1155.

    Article  CAS  Google Scholar 

  28. Katifori, E., Comptes Rendus Phys., 2018, vol. 19, no. 4, pp. 244–252.

    Article  CAS  Google Scholar 

  29. Becker, L., Carré, V., Poutaraud, A., Merdinoglu, D., and Chaimbault, P., Molecules, 2014, vol. 19, no. 7, pp. 10587–10600.

    Article  Google Scholar 

  30. Seneviratne, H.K., Dalisay, D.S., Kim, K.-W., Moinuddin, S.G., Yang, H., Hartshorn, C.M., et al., Phytochem., 2015, vol. 113, pp. 140–148.

    Article  CAS  Google Scholar 

  31. Dillon, V.M., Overton, J., Grayer, R.J., and Harborne, J.B., Phytochemistry, 1997, vol. 44, no. 4, pp. 599–603.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship and The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund). This work was also supported by the Program in Biotechnology, Faculty of Science, Chulalongkorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangvanich.

Ethics declarations

No potential conflict of interest was reported by the authors. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komkleow, S., Niyomploy, P. & Sangvanich, P. Maldi-mass Spectrometry Imaging for Phytoalexins Detection in RD6 Thai Rice. Appl Biochem Microbiol 57, 533–541 (2021). https://doi.org/10.1134/S0003683821040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040074

Keywords:

Navigation