Skip to main content
Log in

Plant Growth-promoting Activities of Penicillium sp. NAUSF2 Ameliorate Vigna radiata Salinity Stress in Phosphate-deficient Saline Soil

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The halotolerant phosphate-solubilizing fungus Penicillium sp. NAUSF2 was isolated from rhizospheric soil in coastal regions of South Gujarat, India, and identified on the basis of morphological characteristics and internal transcribed spacer gene sequence (ITS1 and ITS4). The isolate solubilized rock phosphate up to 843 µM. There was drop in pH with the secretion of gluconate (31.7 mM) and oxalate (3.2 mM) mediated by the high glucose oxidase and oxaloacetate acetylhydrolase activities, respectively. This fungus also demonstrated plant growth-promoting activities such as indole-3-acetic acid (127.82 g/L) and siderophore production. Inoculation of Penicillium sp. NAUSF2 to Vigna radiata (mung bean) significantly increased plant P uptake and growth parameters. It showed reduced disease severity index due to increased levels of antioxidative enzymes and jasmonic acid when treated with the leaf spot pathogen Xanthomonas axonopodis pv. V. radiata. These results suggest the potential of Penicillium sp. NAUSF2 as a biotechnological tool to help plants to cope up with stress in saline soils and broaden the spectrum of phosphate solubilizers available for field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Munns, R. and Tester, M., Ann. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  Google Scholar 

  2. Pozo, M., Lopez-Raez, J.A., Azcon-Aguilar, C., and Garcia-Garrido, J.M., New Phytol., 2015, vol. 205, no. 4, pp. 1431–1436.

    Article  CAS  Google Scholar 

  3. Glick, B.R., Scientifica, 2012, vol. 2012, pp. 1–15.

    Article  Google Scholar 

  4. Bent, E., Multigenic and Induced Systemic Resistance in Plants, Tuzun, S. and Bent, E., Eds., New York, USA: Springer, 2006, pp. 225–258.

    Google Scholar 

  5. Wakelin, S.A., Warren, R.A., Harvey, P.R., and Ryder, M.H., Biol. Fertil. Soils, 2004, vol. 40, pp. 36–43.

    Article  CAS  Google Scholar 

  6. Srinivasan, R., Yandigeri, M., Kashyap, S., and Alagawadi, A., Saudi J. Biol. Sci., 2012, vol. 19, pp. 427–434.

    Article  CAS  Google Scholar 

  7. Gyaneshwar, P., Naresh, K.J., and Parekh, L.J., World J. Microbiol. Biotechnol., 1998, vol. 14, pp. 669–673.

    Article  CAS  Google Scholar 

  8. Babu, A.G., Kim, S.W., Yadav, D.R., Hyum, U., Adhikari, M., and Lee, Y.S., Mycobiology, 2015, vol. 43, pp. 49–56.

    Article  Google Scholar 

  9. Shamly, V., Kali, A., Srirangaraj, S., and Umadevi, S., J. Clin. Diagn. Res., 2014, vol. 8, no. 7, pp. 1–2.

    Article  Google Scholar 

  10. ISTA, International Seed Testing Association Rule Book, Seed Sci. Technol., 1985, vol. 13, no. 2, pp. 299–520.

    Google Scholar 

  11. Premono, M.E., Moawad, A.M., and Vlek, P.L.G., Indones. J. Crop Sci., 1996, vol. 11, pp. 13–23.

    Google Scholar 

  12. Witteveen, F.B., Vondervoort, P.V., Swart, K., and Visser, J., Appl. Microbiol. Biotechnol., 1990, vol. 33, pp. 683–686.

    Article  CAS  Google Scholar 

  13. Lenz, H., Wunderwald, P., and Eggerer, H., Eur. J. Biochem., 1976, vol. 65, pp. 225–236.

    Article  CAS  Google Scholar 

  14. Gordon, S.A. and Paleg, L.G., Plant Physiol., 1957, vol. 10, pp. 39–47.

    Article  CAS  Google Scholar 

  15. Milagres, A.M., Machuca, A., and Napoleao, D., J. Microbiol. Methods, 1999, vol. 37, pp. 1–6.

    Article  CAS  Google Scholar 

  16. Shaharoona, B., Arshad, M., Zahir, Z.A., and Khalid, A., Soil Biol. Biochem., 2006, vol. 38, pp. 2971–2975.

    Article  CAS  Google Scholar 

  17. Dursun, A., Donmez, M.F., and Sahin, F., Eur. J. Plant Pathol., 2002, vol. 108, pp. 811–813.

    Article  CAS  Google Scholar 

  18. Aebi, H., Methods Enzymol., 1984, vol.105, pp.121–126.

    Article  CAS  Google Scholar 

  19. Van Rossun, M.N.P.C., Alberda, M., and Van Der Plas, L.H.W. Plant Sci., 1997, vol. 130, pp. 207–216.

    Article  Google Scholar 

  20. Schaedle, M. and Bassham, J.A., Plant Physiol., 1977, vol. 59, pp. 1011–1012.

    Article  CAS  Google Scholar 

  21. Boyland, E. and Chasseaud, L.F., Adv. Enzymol, 1969, vol. 32, pp. 173 – 219.

    CAS  PubMed  Google Scholar 

  22. Ames, B. N., Methods Enzymol., 1964, vol. 8, pp. 115–118.

    Article  Google Scholar 

  23. Plant Analysis: An Interpretation Manual, Reuter, D.J. and Robinson, J.B., eds., Collingwood: CSIRO Publishing, 1997.

    Google Scholar 

  24. Linder, R.C., Plant Physiol., 1944, vol. 19, pp. 76–89.

    Article  Google Scholar 

  25. Peterson, G. L., Anal. Biochem., 1979, vol. 100, pp. 201–220.

    Article  CAS  Google Scholar 

  26. Pan, X., Welti, R., and Wang, X., Nat. Protoc., 2010, vol. 5, pp. 986–992.

    Article  CAS  Google Scholar 

  27. Verma, A. and Ekka, A., Afr. J. Microbiol. Res., 2017, vol. 11, no. 8, pp. 356–365.

    Article  CAS  Google Scholar 

  28. Elias, F., Woyessa, D., and Muleta, D., Int. J. Microbiol., 2016, vol. 2016, pp. 1–11.

    Article  Google Scholar 

  29. Mendes, G.O., Vassilev, N.B., Bonduki, V.A., Da Silva, I.R., Ribeiro, J.I., and Costa, M.D., Appl. Environ. Microbiol., 2013, vol. 79, pp. 4906–4913.

    Article  CAS  Google Scholar 

  30. Bose, A., Shah, D., and Keharia, H., Mycology, 2013, vol. 4, pp. 103–111.

    Article  CAS  Google Scholar 

  31. Payne, S. M., Meth. Enzymol., 1994, vol. 235, pp. 329–344.

    Article  CAS  Google Scholar 

  32. Radhakrishnan, R., Kang, S. M., Baek, I. Y., and Lee, I. N., J. Plant Interact., 2014, vol. 9, pp. 754–762.

    Article  CAS  Google Scholar 

  33. Maity, A., Pal, R.K., Chandra, R., and Singh, N.V., Sci. Hortic., 2014, vol. 169, pp. 111–117.

    Article  CAS  Google Scholar 

  34. Glazebrook, J., Curr. Opin. Plant Biol., 2001, vol. 4, pp. 301–308.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The help extended by associate professor Dr. P. Singh (Plant Pathology), ASBI, NAU in disease scoring is sincerely acknowledged.

Funding

The author conveys heartfelt thanks to Dean PG Studies, Navsari Agricultural University, Navsari, for providing funding for the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jha.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Parekh, V., Patel, K. et al. Plant Growth-promoting Activities of Penicillium sp. NAUSF2 Ameliorate Vigna radiata Salinity Stress in Phosphate-deficient Saline Soil. Appl Biochem Microbiol 57, 500–507 (2021). https://doi.org/10.1134/S000368382104013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382104013X

Keywords:

Navigation