Skip to main content
Log in

Role of Lipopolysaccharide and Nonspecific Porins of Yersinia pseudotuberculosis in the Reception of Pseudotuberculous Diagnostic Bacteriophage

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The role of the outer membrane components of Yersinia pseudotuberculosis and Yersinia pestis in the adsorption of pseudotuberculous diagnostic bacteriophage (PDB) was assessed with two model bacteriophage-antigen systems, in which the target antigens were either in the solution or on the surface of polystyrene microspheres. It was established that the nonspecific OmpF and OmpC porins of Y. pseudotuberculosis, along with lipopolysaccharide, are involved in the reception of PDB. It was determined that molecular conformation of the porins plays a significant role in interaction with the bacteriophage. It was found that the O antigen of Y. pseudotuberculosis not only does not participate in the reception of PDB but also prevents it by shielding the receptor site on the Yersinia lipopolysaccharide core, which remains completely accessible for the bacteriophage on Y. pestis cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Cabanel, N., Galimand, M., Bouchier, C., Chesnokova, M., Klimov, V., and Carniel, E., Int. J. Med. Microbiol., 2017, vol. 307, no. 7, pp. 371–381.

    Article  CAS  PubMed  Google Scholar 

  2. Rohde, C., Wittmann, J., and Kutter, E., Surg. Infect., 2018, vol. 19, no. 8, pp. 737–744.

    Article  Google Scholar 

  3. Sharma, S., Chatterjee, S., Datta, S., Prasad, R., Dubey, D., Prasad, R.K., and Vairale, M.G., Folia Microbiol., 2017, vol. 62, pp. 17–55.

    Article  CAS  Google Scholar 

  4. Letarov, A.V. and Kulikov, E.E., Usp. Biol. Khim., 2017, vol. 57, pp. 153–208.

    Google Scholar 

  5. Silva, J.B., Storms, Z., and Sauvageau, D., FEMS Microbiol. Lett., 2016, vol. 363, no. 4. https://doi.org/10.1093/femsle/fnw002

  6. Broeker, N.K. and Barbirz, S., Mol. Microbiol., 2017, vol. 105, no. 3, pp. 353–357.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez, F., Helm, R.F., Broadway, K.M., and Scharf, B.E., J. Bacteriol., 2018, vol. 200, no. 19. e00363–18. https://doi.org/10.1128/JB.00363-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pajunen, M.I., Molineux, I.J., and Skurnik, M., Adv. Exp. Med. Biol., 2003, vol. 529, pp. 233–240. https://doi.org/10.1007/0-306-48416-1_45

    Article  PubMed  Google Scholar 

  9. Chatterjee, S. and Rothenberg, E., Viruses, 2012, vol. 4, no. 11, pp. 3162–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomas, J.M. and Jofre, J.T., J. Bacteriol., 1985, vol. 162, no. 3, pp. 1276–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nobrega, F.L., Vlot, M., de Jonge, P.A., Dreesens, L.L., Beaumont, H.J.E., Lavigne, R., Dutilh, B.E., and Brouns, S.J.J., Nat. Rev. Microbiol., 2018, vol. 16, pp. 760–773.

    Article  CAS  PubMed  Google Scholar 

  12. Power, M.L., Ferrari, B.C., Littlefield-Wyer, J., Gordon, D.M., Slade, M.B., and Veal, D.A., Appl. Environ. Microbiol., 2006, vol. 72, no. 12, pp. 7930–7932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langenscheid, J., Killmann, H., and Braun, V., FEMS Microbiol. Lett., 2004, vol. 234, no. 1, pp. 133–137.

    Article  CAS  PubMed  Google Scholar 

  14. Gibbs, K.A., Isaac, D.D., Xu, J., Hendrix, R.W., Silhavy, T.J., and Theriot, J.A., Mol. Microbiol., 2004, vol. 53, no. 6, pp. 1771–1783.

    Article  CAS  PubMed  Google Scholar 

  15. Trojet, S.N., Caumont-Sarcos, A., Perrody, E., Comeau, A.M., and Krisch, H.M., Genome Biol. Evol., 2011, vol. 3, pp. 674–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bekhit, A., Fukamachi, T., Saito, H., and Kobayashi, H., Biol. Pharm. Bull., 2011, vol. 34, pp. 330–334.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, X., Cui, Y., Yan, Y., Du, Z., Tan, Y., Yang, H., et al., J. Virol., 2013, vol. 87, no. 22, pp. 12260–12269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho, T.D. and Slauch, J.M., J. Bacteriol., 2001, vol. 183, no. 4, pp. 1495–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rashid, M.H., Revazishvili, T., Dean, T., Butani, A., Verratti, K., Bishop-Lilly, K.A., Sozhamannan, S., Sulakvelidze, A., and Rajanna, C., Bacteriophage, 2012, vol. 2, no. 3, pp. 168–177.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Filippov, A.A., Sergueev, K.V., He, Y., Huang, X.-Z., Gnade, B.T., Mueller, A.J., Fernandez-Prada, C.M., and Nikolich, M.P., PLoS One, 2011, vol. 6, no. 9. e25486. https://doi.org/10.1371/journal.pone.0025486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skurnik, M., Adv. Exp. Med. Biol., 2012, vol. 954, pp. 293–301.

    Article  CAS  PubMed  Google Scholar 

  22. Kiljunen, S., Hakala, K., Pinta, E., Huttunen, S., Pluta, P., Gador, A., Lonnberg, H., and Skurnik, M., Microbiology, 2005, vol. 151, no. 12, pp. 4093–4102.

    Article  CAS  PubMed  Google Scholar 

  23. Byvalov, A.A., Dudina, L.G., Konyshev, I.V., Litvinets, S.G., and Martinson, E.A., Bull. Eksp. Biol. Med., 2015, vol. 160, no. 11, pp. 622–625.

    Google Scholar 

  24. Lu, Q., Wang, J., Faghihnejad, A., Zeng, H., and Liu, Y., Soft Matter, 2011, vol. 7, no. 19, pp. 9366–9379.

    Article  CAS  Google Scholar 

  25. Burks, G.A., Velegol., S.B., Paramonova, E., Lindenmuth, B.E., Feick, J.D., and Logan, B.E., Langmuir, 2003, vol. 19, no. 6, pp. 2366–2371.

    Article  CAS  Google Scholar 

  26. Zou, D., Wu, W., Zhang, J., Ma, Q., Fan, S., Cheng, J., Li, D., Niu, J., Qian, X., Li, W., and Cui, D., RSC Adv., 2019, vol. 9, pp. 39976–39985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie, S., Chen, S., Zhu, Q., Li, X., Wang, D., Shen, S., Jin, M., Zhou, G., Zhu, Y., and Shui, L., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 23, pp. 26374–26383.

    Article  CAS  PubMed  Google Scholar 

  28. Filippov, A.A., Sergueev, K.V., He, Y., and Nikolich, M.P., Adv. Exp. Med. Biol., 2012, vol. 954, pp. 123–134.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, X. and Skurnik, M., Adv. Exp. Med. Biol., 2016, vol. 918, pp. 361–375.

    Article  CAS  PubMed  Google Scholar 

  30. Chernyad'ev, A.V., Dudina, L.G., Litvinets, S.G., Chernikov, V.P., and Byvalov, A.A., Probl. Osobo Opasnykh Infekts., 2014, no. 4, pp. 80–82.

  31. Filippov, A.A., Sergueev, K.V., and Nikolich, M.P., Bacteriophage, 2012, vol. 2, no. 3, pp. 186–189.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Molecular Cloning: A Laboratory Manual, 3rd ed., Sambrook, J. and Russell, D.W., New York: Cold Spring Harbor Laboratory, 2001, vol. 1.

  33. Labinskaya, A.S., Mikrobiologiya s tekhnikoi mikrobiologicheskikh issledovanii (Microbiology with microbiological research technique), Moscow, 1978.

  34. Westphal, O. and Jann, K., Methodes Carbohydr. Chem., 1965, vol. 5, pp. 83–91.

    CAS  Google Scholar 

  35. Byvalov, A.A., Dudina, L.G., Litvinets, S.G., Novikova, O.D., Khomenko, V.A., Portnyagina, O.Yu., and Ovodov, Yu.S., Appl. Biochem. Microbiol., 2014, vol. 50, no. 2, pp. 203–210.

    Article  CAS  Google Scholar 

  36. Novikova, O.D., Fedoreeva, L.I., Khomenko, V.A., Portnyagina, O.Yu., Ermak, I.M., Likhatskaya, G.N., Moroz, S.V., Solov’eva, T.F., and Ovodov, Yu.S., Bioorg. Khim., 1993, vol. 19, no. 5, pp. 536–547.

    CAS  Google Scholar 

  37. Garavito, R.M. and Rosenbusch, J.P., Methods Enzymol., 1986, vol. 125, pp. 309–329.

    Article  CAS  PubMed  Google Scholar 

  38. Laemmly, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  Google Scholar 

  39. Khomenko, V.A., Portnyagina, O.Yu., Novikova, O.D., Isaeva, M.P., Kim, N.Yu., Likhatskaya, G.N., Vostrikova, O.P., and Solov’eva, T.F., Russ. J. Bioorg. Chem., 2008, vol. 34, no. 2, pp. 162–168.

    Article  CAS  Google Scholar 

  40. Schöler, N., Olbrich, C., Tabatt, K., Muller, R.H., Hahn, H., and Liesenfeld, O., Int. J. Pharm., 2001, vol. 221, pp. 57–67. https://doi.org/10.1016/s0378-5173(01)00660-3

    Article  PubMed  Google Scholar 

  41. Takeda, H., Uetake, Virology, 1973, vol. 52, no. 1, pp. 148–159.

    Article  CAS  PubMed  Google Scholar 

  42. Konyshev, I., Byvalov, A., Ananchenko, B., Fakhrullin, R., Danilushkina, A., and Dudina, L., J. Biomech., 2020, vol. 99, p. 109504. https://doi.org/10.1016/j.jbiomech.2019.109504

    Article  PubMed  Google Scholar 

  43. Byvalov, A.A., Konyshev, I.V., Novikova, O.D., Portnyagina, O.Yu., Belozerov, V.S., Khomenko, V.A., and Davydova, V.N., Biofizika, 2018, vol. 63, no. 5, pp. 913–922.

    Google Scholar 

  44. Santos, N.C., Silva, A.C., Castanho, M.A., Martins-Silva, J., and Saldanha, C., Chembiochem, 2003, vol. 4, no. 1, pp. 96–100.

    Article  CAS  PubMed  Google Scholar 

  45. Knirel, Yu.A. and Anisimov, A.P., Acta Naturae, 2012, vol. 4, no. 3, pp. 49–61.

    Article  Google Scholar 

  46. Salem, M. and Skurnik, M., Viruses, 2018, vol. 10, no. 4, p. 174. https://doi.org/10.3390/v10040174

    Article  CAS  PubMed Central  Google Scholar 

  47. Kunstmann, S., Scheidt, T., Buchwald, S., Helm, A., Mulard, L.A., Fruth, A., and Barbirz, S., Viruses, 2018, vol. 10, no. 8, p. 431. https://doi.org/10.3390/v10080431

    Article  CAS  PubMed Central  Google Scholar 

  48. Ho, N., Kondakova, A.N., Knirel, Y.A., and Creuzenet, C., Mol. Microbiol., 2008, vol. 68, no. 2, pp. 424–447.

    Article  CAS  PubMed  Google Scholar 

  49. Kiljunen, S., Datta, N., Dentovskaya, S.V., Anisimov, A.P., Knirel, Y.A., Bengoechea, J.A., Holst, O., and Skurnik, M., J. Bacteriol., 2011, vol. 193, no. 18, pp. 4963–4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Born, F., Braun, P., Scholz, H.C., and Grass, G., Pathogens, 2020, vol. 9, no. 8, p. 611. https://doi.org/10.3390/pathogens9080611

    Article  CAS  PubMed Central  Google Scholar 

  51. Begic, S. and Worobec, E.A., Microbiology, 2006, vol. 152, no. 2, pp. 485–491.

    Article  CAS  PubMed  Google Scholar 

  52. Bystritskaya, E.P., Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2014, no. 1, pp. 164–168.

  53. Holzenburg, A., Engel, A., Kessler, R., Manz, H.J., Lustig, A., and Aebi, U., Biochemistry, 1989, vol. 28, no. 10, pp. 4187–4193.

    Article  CAS  PubMed  Google Scholar 

  54. Novikova, O.D., Vakorina, T.I., Khomenko, V.A., Likhatskaya, G.N., Kim, N.Yu., Emelyanenko, V.I., Kuznetsova, S.M., and Solov’eva, T.F., Biochemistry (Moscow), 2008, vol. 73, no. 2, pp. 139–148.

    CAS  PubMed  Google Scholar 

  55. Bertozzi, SilvaJ., Storms, Z., and Sauvageau, D., FEMS Microbiol. Lett., 2016, p. 363. https://doi.org/10.1093/femsle/fnw002

Download references

Funding

The work was supported by a Grant of the President of the Russian Federation (grant no. MK-3383.2021.1.4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. D. Novikova or A. A. Byvalov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudina, L.G., Novikova, O.D., Portnyagina, O.Y. et al. Role of Lipopolysaccharide and Nonspecific Porins of Yersinia pseudotuberculosis in the Reception of Pseudotuberculous Diagnostic Bacteriophage. Appl Biochem Microbiol 57, 426–433 (2021). https://doi.org/10.1134/S0003683821040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040049

Keywords:

Navigation