Skip to main content
Log in

Production of Lactic Acid Enantiomers by Lactobacillus Strains under Limited Dissolved Oxygen Conditions in the Presence of a Pentose Fraction

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid has a privileged position in the family of carboxylic substances due to its several applications, including the production of biodegradable polymers such as polylactic acid in recent years. Thus, it has been considered one of the top 10 biorefinery chemicals by the United States Department of Energy. Lactic acid can be obtained by chemical synthesis and fermentation. However, only the fermentative process allows the formation of a pure enantiomer, which is crucial in biopolymer production. In this context and considering a possible second-generation production of lactic acid, the aim of the study was to evaluate the enantiomer produced by 4 lactic acid bacteria and their capacity of production in MRS medium containing xylose. There was no observed xylose consumption or catabolite repression. Lactobacillus helveticus produced a racemic mixture of D(–) and L(+) lactic acid and Lactobacillus delbrueckii lactis produced mostly D(–) lactic acid. In comparison, Lactobacillus coryniformis strains presented the most expressive results, with an exclusive production of D(–) lactic acid (optical purity >99%) and high resistance to pH variation, achieving production from 18.5 to 21.0 g/L with yield of 0.95 g/g of glucose. These strains could be indicated for the second-generation D(–) lactic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Cingadi, S., Srikanth, K., Arun E.V.R, and Sivaprakasam, S., Biochem. Eng. J., 2015, vol. 102, pp. 82–90.

    Article  CAS  Google Scholar 

  2. Singhvi, M., Zendo, T., Iida, H., Gokhale, D., and Sonomoto, K., J. Biosci. Bioeng., 2017, vol. 124, no. 6, pp. 674–679.

    Article  CAS  Google Scholar 

  3. López-Gómez, J.P., Alexandri, M., Schneider, R., and Venus, J., Process Biochem., 2019, vol. 79, pp. 1–10.

    Article  Google Scholar 

  4. Bernardo, M.P., Coelho, L.F., Sass, D.C., and Contiero, J., Braz. J. Microbiol., 2016, vol. 47, pp. 640–646.

    Article  CAS  Google Scholar 

  5. Bahry, H., Abdalla, R., Pons, A., Taha, S., and Vial, C., J. Biotechnol., 2019, vol. 306, pp. 81–88.

    Article  CAS  Google Scholar 

  6. Mora-Villalobos, J.A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., et al., Fermentation, 2020, vol. 6, no 23, pp. 1–21.

    Article  Google Scholar 

  7. Nampoothiri, K.M., Nair, N.R., and John, R.P., Bioresour. Technol., 2010, vol. 101, pp. 8493–8501.

    Article  Google Scholar 

  8. De Oliveira, R., Komesu, A., Vaz Rossell, C.E., and Maciel Filho, R., Biochem. Eng. J., 2018, vol. 133, pp. 219–239.

    Article  Google Scholar 

  9. Abdel-Rahman, M.A. and Sonomoto, K., J. Biotechnol., 2016, vol. 236, pp. 176–192.

    Article  CAS  Google Scholar 

  10. Alexandri, M., López-Gómez, J.P., Olszewska-Widdrat, A., and Venus, J., Fermentation, 2020, vol. 6, no. 42, pp. 1–18.

    Article  Google Scholar 

  11. Nakano, S., Ugwu, C.U., and Tokiwa, Y., Bioresour. Technol., 2012, vol. 104, pp. 791–794.

    Article  CAS  Google Scholar 

  12. Castillo Martinez, F.A., Balciunas, E.M., Salgado, J.M., Domínguez Gonzalez, J.M., Converti, A., and de Oliveira, R.P.S., Trends Food Sci. Technol., 2013, vol. 30, pp. 70–83.

    Article  Google Scholar 

  13. Slavica, A., Trontel, A., Jelovac, N., Kosovec, Z., Santek, B., and Novak, S., J. Biotechnol., 2015, vol. 202, pp. 50–59.

    Article  CAS  Google Scholar 

  14. Sun, Z., Liu, W., Song, Y., Xu, H., Yu, J., Bilige, M., et al., J. Dairy Sci., 2015, vol. 98, pp. 2962–2972.

    Article  CAS  Google Scholar 

  15. Zago, M., Orrù, L., Rossetti, L., Lamontanara, A., Fornasari, M. E., Bonvini, B., et al., Food Microbiol., 2017, vol. 66, pp. 110–116.

    Article  CAS  Google Scholar 

  16. Alexandraki, V., Kazou, M., Pot, B., Tsakalidou, E., and Papadimitriou, K., Data Brief, 2019, vol. 25, pp. 1–6.

    Article  Google Scholar 

  17. Nguyen, C.M., Choi, G.J., Choi, Y.H., Jang, K.S., and Kim, J.C., Biochem. Eng. J., 2013, vol. 81, pp. 40–46.

    Article  CAS  Google Scholar 

  18. Balakrisham, R., Reddy Tadi, S.R., Sivaprakasam, S., and Rajaram, S., Ind. Crops Prod., 2018, vol. 111, pp. 731–742.

    Article  Google Scholar 

  19. Jaramillo, L., Santos, D., Borges, E., Dias, D., and Pereira, N., Ann. Microbiol., 2018, vol. 68, pp. 547–555.

    Article  CAS  Google Scholar 

  20. Agyei, D., Lim, W., Zass, M., Tan, D., and Danquah, M.K., Chem. Eng. Sci., 2013, vol. 95, pp. 323–330.

    Article  CAS  Google Scholar 

  21. Agyei, D. and Danquah, M.K., Biochem. Eng. J., 2012, vol. 64, pp. 61–68.

    Article  CAS  Google Scholar 

  22. Burns, P., Sánchez, B., Vinderola, G., Ruas-Madiedo, P., Ruiz, L., Margolles, A., et al., Int. J. Food Microbiol., 2010, vol. 142, pp. 132–141.

    Article  CAS  Google Scholar 

  23. Özcelik, S., Kuley, E., and Özogul, F., LWT Food Sci. Technol., 2016, vol. 73, pp. 536–542.

    Article  Google Scholar 

  24. Bouguettoucha, A., Nacef, S., Balannec, B., and Amrane, A., Process Biochem., 2009, vol. 44, no. 7, pp. 742–748.

    Article  CAS  Google Scholar 

  25. Bian, X., Muhammad, Z., Evivie, S.E., Luo, G-W., Xu, M., and Huo, G-C., Food Control, 2016, vol. 66, pp. 183–189.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Leopoldo Américo Miguez de Mello Research and Development Center (Cenpes), Petrobras, Brasil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jaramillo.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo, L., Santos, D., Guedes, D. et al. Production of Lactic Acid Enantiomers by Lactobacillus Strains under Limited Dissolved Oxygen Conditions in the Presence of a Pentose Fraction. Appl Biochem Microbiol 57, 452–457 (2021). https://doi.org/10.1134/S0003683821040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040050

Keywords:

Navigation