Skip to main content
Log in

Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The composition dependence of the crystal structure and magnetism of the 6 M martensite for the Cu-doped Ni43.75Mn37.5In12.5Co6.25 alloy at different site occupations (Cu substitution for Ni, Mn, In, and Co, respectively) is investigated in detail with the first-principles calculations. Results show that the austenite (A) phase exhibits a ferromagnetic (FM) state in all occupation manners, the 6 M martensite possesses an FM state except for the case of Cu substitution at the normal Mn (Mn1) site, and the non-modulated (NM) martensite displays a ferrimagnetic (FIM) state apart from the Cu substitution at the Ni, Mn1, or In sites. The Cu atom destabilizes the A, 6 M, and NM phases regardless of the occupation manner. The one-step martensitic transformation from the A to NM phase occurs in the case of Cu substituting for Mn1, excess Mn (Mn2), or Co; for Cu substituting Ni, a martensitic transformation including 6 M martensite happens, i.e., A → 6 M → NM; however, the martensitic transformation disappears when Cu replaces In site. From the equilibrium lattice constants, it can be speculated that the substitution of Cu for Ni can effectively reduce the thermal hysteresis (∆THys). The magnetic properties are found to be greatly reduced by the substitution of the non-magnetic element Cu for the ferromagnetic Mn atom, whereas the effect is fewer in the remaining cases. It is predicted that the alloy has more favorable properties when Cu replaces Ni. The present results can lay a theoretical foundation for further development of multielement magnetic shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, Appl. Phys. Lett. 85, 4358 (2004)

    Article  CAS  Google Scholar 

  2. Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Scr. Mater. 163, 14 (2019)

    Article  CAS  Google Scholar 

  3. S. Yang, C. Wang, Z. Shi, J. Wang, J. Zhang, Y. Huang, X. Liu, Mater. Sci. Eng. A 655, 204 (2016)

    Article  CAS  Google Scholar 

  4. J.J. Yang, Z.B. Li, X.L. Zhang, B. Yang, X. Zhao, L. Zuo, AIP Adv. 11, 015244 (2021)

    Article  CAS  Google Scholar 

  5. X.M. Huang, Y. Zhao, H.L. Yan, N. Jia, S. Tang, J. Bai, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 185, 94 (2020)

    Article  CAS  Google Scholar 

  6. Z.Z. Li, Z.B. Li, D. Li, J.J. Yang, B. Yang, Y. Hu, D.H. Wang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 192, 52 (2020)

    Article  CAS  Google Scholar 

  7. Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater. 151, 41 (2018)

    Article  CAS  Google Scholar 

  8. A.S. Turabi, H.E. Karaca, H. Tobe, B. Basaran, Y. Aydogdu, Y.I. Chumlyakov, Scr. Mater. 111, 110 (2016)

    Article  CAS  Google Scholar 

  9. E. Pagounis, R. Chulist, M.J. Szczerba, M. Laufenberg, Appl. Phys. Lett. 105, 052405 (2014)

    Article  Google Scholar 

  10. Z.B. Li, J.J. Yang, D. Li, Z.Z. Li, B. Yang, H.L. Yan, C.F. Sánchez-Valdés, J.L. Sánchez Llamazares, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Adv. Electron. Mater. 5, 1800845  (2019)

  11. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439, 957 (2006)

    Article  CAS  Google Scholar 

  12. X.Z. Liang, J. Bai, J. Gu, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 44, 31 (2020)

    Article  Google Scholar 

  13. M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, Y. Elerman, J. Magn. Magn. Mater. 368, 191 (2014)

    Article  CAS  Google Scholar 

  14. S. Saritas, M. Kaya, I. Dincer, Y. Elerman, Metall. Mater. Trans. A. 48, 5068 (2017)

    Article  CAS  Google Scholar 

  15. J. Bai, D. Liu, J.L. Gu, S.F. Shi, X.Z. Liang, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Magn. Magn. Mater. 516, 167363 (2020)

    Article  CAS  Google Scholar 

  16. J.P. Camarillo-Garcia, F. Hernández-Navarro, D.E. Soto-Parra, D. Ríos-Jara, H. Flores-Zúñiga, Scr. Mater. 166, 92 (2019)

    Article  CAS  Google Scholar 

  17. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  18. P.E. Blochl, Phys. Rev. B. Condens. Matter. 50, 17953 (1994)

    Article  CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  20. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  21. X.Z. Liang, J. Bai, J.L. Gu, J.L. Wang, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 195, 109 (2020)

    Article  CAS  Google Scholar 

  22. A. Kundu, S. Ghosh, S. Ghosh, Phys. Rev. B 96, 174107 (2017)

    Article  Google Scholar 

  23. T. Mehaddene, J. Neuhaus, W. Petry, K. Hradil, P. Bourges, A. Hiess, Phys. Rev. B 78, 104110 (2008)

    Article  Google Scholar 

  24. S. Ghosh, S. Ghosh, Phys. Rev. B 101, 024109 (2020)

    Article  CAS  Google Scholar 

  25. Z.B. Li, N. Xu, Y.D. Zhang, C. Esling, J.M. Raulot, X. Zhao, L. Zuo, Acta Mater. 61, 3858 (2013)

    Article  CAS  Google Scholar 

  26. N. Xu, J.M. Raulot, Z.B. Li, Y.D. Zhang, J. Bai, W. Peng, X.Y. Meng, X. Zhao, L. Zuo, C. Esling, J. Alloys Compd. 614, 126 (2014)

    Article  CAS  Google Scholar 

  27. C.M. Li, H.B. Luo, Q.M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 82, 024201 (2010)

    Article  Google Scholar 

  28. Y. Song, X. Chen, V. Dabade, T.W. Shield, R.D. James, Nature 502, 85 (2013)

    Article  CAS  Google Scholar 

  29. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Nat. Mater. 5, 286 (2006)

    Article  CAS  Google Scholar 

  30. Z. Wu, Z. Liu, H. Yang, Y. Liu, G. Wu, Intermetallics 19, 1839 (2011)

    Article  CAS  Google Scholar 

  31. Z.B. Li, Y.W. Jiang, Z.Z. Li, C.F. Sánchez Valdés, J.L. Sánchez Llamazares, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, IUCrJ 5, 54 (2018)

  32. H.L. Yan, H.X. Liu, Y. Zhao, N. Jia, J. Bai, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 74, 27 (2021)

    Article  CAS  Google Scholar 

  33. Z.N. Zhou, H. Akamine, J. Li, L. Yang, T. Higashizono, Q.D. Hu, M. Nishida, J.G. Li, J. Alloys Compd. 817, 153150 (2020)

    Article  CAS  Google Scholar 

  34. M. Siewert, M.E. Gruner, A. Hucht, H.C. Herper, A. Dannenberg, A. Chakrabarti, N. Singh, R. Arroyave, P. Entel, Adv. Eng. Mater. 14, 530 (2012)

    Article  CAS  Google Scholar 

  35. C. Bungaro, K.M. Rabe, A. Dal Corso, Phys. Rev. B 68, 134104 (2003)

    Article  Google Scholar 

  36. D. Zhao, J. Liu, X. Chen, W. Sun, Y. Li, M. Zhang, Y. Shao, H. Zhang, A. Yan, Acta Mater. 133, 217 (2017)

    Article  CAS  Google Scholar 

  37. Y.H. Qu, D.Y. Cong, X.M. Sun, Z.H. Nie, W.Y. Gui, R.G. Li, Y. Ren, Y.D. Wang, Acta Mater. 134, 236 (2017)

    Article  CAS  Google Scholar 

  38. S. Roy, E. Blackburn, S.M. Valvidares, M.R. Fitzsimmons, S.C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S.K. Sinha, J.B. Kortright, Phys. Rev. B 79, 235127 (2009)

    Article  Google Scholar 

  39. E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 70, 024427 (2004)

    Article  Google Scholar 

  40. E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 71, 214412 (2005)

    Article  Google Scholar 

  41. S. Ghosh, S. Ghosh, Phys. Rev. B 99, 064112 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51771044), the Natural Science Foundation of Hebei Province (No. E2019501061), the Fundamental Research Funds for the Central Universities (No. N2023027), the Program of Introducing Talents of Discipline Innovation to Universities 2.0 (the 111 Project of China 2.0, No. BP0719037) and the Liaoning Revitalization Talents Program (Grant No. XLYC1802023). This work was carried out at Lvliang Cloud Computing Center of China, and the calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Bai or Xiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Bai, J., Gu, J. et al. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations. Acta Metall. Sin. (Engl. Lett.) 35, 1034–1042 (2022). https://doi.org/10.1007/s40195-021-01291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01291-5

Keywords

Navigation