Skip to main content
Log in

Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Geomaterials such as soils and rocks can exhibit inherent anisotropy due to the preferred orientation of mineral grains and/or cracks. They can also be partially saturated with multiple types of fluids occupying the pore space. The anisotropic and unsaturated behaviors of geomaterials can be highly interdependent. Experimental studies have shown that the elastic parameters of rocks evolve with saturation. The effect of saturation has also been shown to differ between directions in transversely isotropic clay rock. This gives rise to saturation-dependent stiffness anisotropy. Similarly, permeability anisotropy can also be saturation-dependent. In this study, constitutive equations accommodating saturation-dependent stiffness and hydraulic anisotropy are presented. A linear function is used to describe the relationship between the elastic parameters and saturation, while the relative permeability–saturation relationship is characterized with a log-linear function. These equations are implemented into a hydromechanical framework to investigate the effects of saturation-dependent properties on the shrinkage behavior of clay rocks. Numerical simulations are presented to demonstrate the role of saturation-dependent stiffness and hydraulic anisotropy in shrinkage behavior. The results highlight that strain anisotropy and time evolution of pore pressures are substantially influenced by saturation-dependent stiffness and hydraulic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Al-Sharrad MA, Gallipoli D (2016) Incorporating anisotropy in the Barcelona basic model. In E3S web of conferences (Vol. 9, p. 17003). EDP Sciences

  2. Amorosi A, Rollo F, Houlsby GT (2020) A nonlinear anisotropic hyperelastic formulation for granular materials: comparison with existing models and validation. Acta Geotech 15:179–196

    Google Scholar 

  3. Arndt D, Bangerth W, Blais B, Clevenger TC, Fehling M, Grayver AV, Heister T, Heltai L, Kronbichler M, Maier M, Munch P, Pelteret J, Rastak R, Tomas I, Tuurcksin B, Wang Z, Wells D (2020) The deal I. I library, version 9.2. J Numer Math 28(3):131–146

    MathSciNet  MATH  Google Scholar 

  4. Ashworth M, Doster F (2020) Anisotropic dual-continuum representations for multiscale poroelastic materials: development and numerical modelling. Int J Numer Anal Methods Geomech 44(17):2304–2328

    Google Scholar 

  5. Bakhshian S, Hosseini SA, Lake LW (2020) CO\(_2\)-brine relative permeability and capillary pressure of Tuscaloosa sandstone: effect of anisotropy. Adv Water Resourc 135:103464

    Google Scholar 

  6. Bangerth W, Hartmann R, Kanschat G (2007) Deal. II–A general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24

    MathSciNet  MATH  Google Scholar 

  7. Bear J, Braester C, Menier PC (1987) Effective and relative permeabilities of anisotropie porous media. Transp Porous Media 2:301–316

    Google Scholar 

  8. Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech 10:1–14

    Google Scholar 

  9. Bernier F, Li XL, Bastiaens W (2007) Twenty-five years’ geotechnical observation and testing in the Tertiary Boom Clay formation. Géotechnique 57:229–237

    Google Scholar 

  10. Bonnelye A, Schubnel A, David C, Henry P, Guglielmi Y, Gout C, Fauchille AL, Dick P (2017) Strength anisotropy of shales deformed under uppermost crustal conditions. J Geophys Res Solid Earth 122(1):110–129

    Google Scholar 

  11. Borja RI (2020) Computational poromechanics. Lecture notes. Stanford University, Stanford

    Google Scholar 

  12. Borja RI, Yin Q, Zhao Y (2020) Cam-Clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Methods Appl Mech Eng 360:112695

    MathSciNet  MATH  Google Scholar 

  13. Borja RI (2013) Plasticity modeling and computation. Springer, Berlin

    MATH  Google Scholar 

  14. Borja RI (2006) On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int J Solids Struct 43(6):1764–1786

    MATH  Google Scholar 

  15. Borja RI, White JA (2010) Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech 5:1–14

    Google Scholar 

  16. Borja RI, Choo J (2016) Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure. Comput Methods Appl Mech Eng 309:653–679

    MathSciNet  MATH  Google Scholar 

  17. Burstedde C, Wilcox LC, Ghattas O (2011) p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J Sci Comput 33:1103–1133

    MathSciNet  MATH  Google Scholar 

  18. Cai G, Zhou A, Liu Y, Xu R, Zhao C (2020) Soil water retention behavior and microstructure evolution of lateritic soil in the suction range of 0–286.7 MPa. Acta Geotech 15:3327–3341

    Google Scholar 

  19. Callari C, Abati A (2009) Finite element methods for unsaturated porous solids and their application to dam engineering problems. Comput Struct 87:485–501

    Google Scholar 

  20. Camargo JT, White JA, Borja RI (2021) A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics. Comput Geosci 25:775–792

    MathSciNet  MATH  Google Scholar 

  21. Camargo JT, White JA, Castelleto N, Borja RI (2021) Preconditioners for multiphase poromechanics with strong capillarity. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.3192

    Article  Google Scholar 

  22. Chen Y, Yang Z (2019) A bounding surface model for anisotropically overconsolidated clay incorporating thermodynamics admissible rotational hardening rule. Int J Numer Anal Methods Geomech 44(5):668–690

    Google Scholar 

  23. Chen GJ, Sillen X, Verstricht J, Li X (2011) ATLAS III in situ heating test in boom clay: field data, observation and interpretation. Comput Geotech 38:683–696

    Google Scholar 

  24. Cheng AHD (2020) A linear constitutive model for unsaturated poroelasticity by micromechanical analysis. Int J Numer Anal Methods Geomech 44(4):455–483

    Google Scholar 

  25. Cheng AHD (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Mining Sci 34:199–205

    Google Scholar 

  26. Choo J, Semnani SJ, White JA (2021) An anisotropic viscoplasticity model for shale based on layered microstructure homogenization. Int J Numer Anal Methods Geomech 45(4):502–520

    Google Scholar 

  27. Crisci E, Ferrari A, Giger SB, Laloui L (2019) Hydro-mechanical behaviour of shallow Opalinus Clay shale. Eng Geol 251:214–227

    Google Scholar 

  28. Corey AT, Rathjens CH (1956) Effect of stratification on relative permeability. J Petrol Technol 8(12):69–71

    Google Scholar 

  29. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley, London

    MATH  Google Scholar 

  30. DeReuil AA, Birgenheier LP, McLennan J (2019) Effects of anisotropy and saturation on geomechanical behavior of mudstone. J Geophys Res Solid Earth 124(8):8101–8126

    Google Scholar 

  31. Dewhurst DN, Siggins AF (2006) Impact of fabric, microcracks and stress field on shale anisotropy. Geophys J Int 165(1):135–148

    Google Scholar 

  32. Douma LA, Dautriat J, Sarout J, Dewhurst DN, Barnhoorn A (2020) Impact of water saturation on the elastic anisotropy of the Whitby Mudstone, United Kingdom. Geophysics 85(1):MR57–MR72

    Google Scholar 

  33. Faizi SA, Kwok CY, Duan K (2020) The effects of intermediate principle stress on the mechanical behavior of transversely isotropic rocks: Insights from DEM simulations. Int J Numer Anal Methods Geomech 44(9):1262–1280

    Google Scholar 

  34. Ferrari A, Favero V, Marschall P, Laloui L (2014) Experimental analysis of the water retention behaviour of shales. Int J Rock Mech Mining Sci 72:61–70

    Google Scholar 

  35. Ferrari A, Minardi A, Ewy R, Laloui L (2018) Gas shales testing in controlled partially saturated conditions. Int J Rock Mech Min Sci 107:110–119

    Google Scholar 

  36. François B, Labiouse V, Dizier A, Marinelli F, Charlier R, Collin F (2014) Hollow cylinder tests on boom clay: modelling of strain localization in the anisotropic excavation damaged zone. Rock Mech Rock Eng 47:71–86

    Google Scholar 

  37. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Google Scholar 

  38. Ghaffaripour O, Esgandani GA, Khoshghalb A, Shahbodaghkhan B (2019) Fully coupled elastoplastic hydro-mechanical analysis of unsaturated porous media using a meshfree method. Int J Numer Anal Methods Geomech 43(11):1919–1955

    Google Scholar 

  39. Griffiths DV, Lu N (2005) Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int J Numer Anal Methods Geomech 29:249–267

    MATH  Google Scholar 

  40. Harris NB, Miskimins JL, Mnich CA (2011) Mechanical anisotropy in the Woodford Shale, Permian Basin: Origin, magnitude, and scale. Lead Edge 30(3):284–291

    Google Scholar 

  41. Heroux MA, Willenbring JM (2012) A new overview of the Trilinos project. Sci Progr 20(2):83–88

    Google Scholar 

  42. Hoxha D, Giraud A, Homand F, Auvray C (2007) Saturated and unsaturated behaviour modelling of Meuse-Haute/Marne argillite. Int J Plast 23(5):733–766

    MATH  Google Scholar 

  43. Hu D, Zhou H, Zhang F, Shao J, Zhang J (2013) Modeling of inherent anisotropic behavior of partially saturated clayey rocks. Comput Geotech 48:29–40

    Google Scholar 

  44. Ji S, Li L, Motra HB, Wuttke F, Sun S, Michibayashi K, Salisbury MH (2018) Poisson’s ratio and auxetic properties of natural rocks. J Geophys Res Solid Earth 123(2):1161–1185

    Google Scholar 

  45. Kazemi-Najafi S, Bucur V, Ebrahimi G (2005) Elastic constants of particleboard with ultrasonic technique. Mater Lett 59:2039–2042

    Google Scholar 

  46. Khalili N, Khabbaz MH (1998) A unique relationship for \(\chi \) for the determination of the shear strength of unsaturated soils. Géotechnique 48(5):681–687

    Google Scholar 

  47. Kim J-M (2004) Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media. Geosci J 8(3):291–300

    Google Scholar 

  48. Kivi IR, Ameri MJ, Ghassemi A (2015) Chemoporoelastic characterization of Ghom shale. J Petrol Sci Eng 127:115–123

    Google Scholar 

  49. Kohgo Y, Nakano M, Miyazaki T (1993) Theoretical aspects of constitutive modelling for unsaturated soils. Soils Found 33(4):49–63

    Google Scholar 

  50. Kortekaas TF (1985) Water/oil displacement characteristics in crossbedded reservoir zones. Soc Petrol Eng J 25(06):917–926

    Google Scholar 

  51. Li K, Yin ZY, Cheng Y, Cao P, Meng J (2020) Three-dimensional discrete element simulation of indirect tensile behaviour of a transversely isotropic rock. Int J Numer Anal Methods Geomech 44(13):1812–1832

    Google Scholar 

  52. Li LC, Liu HH (2013) A numerical study of the mechanical response to excavation and ventilation around tunnels in clay rocks. Int J Rock Mech Min Sci 59:22–32

    Google Scholar 

  53. Linvill E, Östlund S (2016) Parametric study of hydroforming of paper materials using the explicit finite element method with a moisture-dependent and temperature-dependent constitutive model. Packag Technol Sci 29(3):145–160

    Google Scholar 

  54. Liu C, Abousleiman Y (2020) Generalized solution to the anisotropic Mandel’s problem. Int J Numer Anal Methods Geomech 44(17):2283–2303

    Google Scholar 

  55. Lo TW, Coyner KB, Toksöz MN (1986) Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite. Geophysics 51(1):164–171

    Google Scholar 

  56. Lyu Q, Ranjith PG, Long X, Kang Y, Huang M (2015) A review of shale swelling by water adsorption. J Nat Gas Sci Eng 27:1421–1431

    Google Scholar 

  57. Ma T, Wei C, Yao C, Yi P (2020) Microstructural evolution of expansive clay during drying-wetting cycle. Acta Geotech 15:2355–2366

    Google Scholar 

  58. Maedo M, Sánchez M, Aljeznawi D, Manzoli O, Guimarães LJ, Cleto PR (2020) Analysis of soil drying incorporating a constitutive model for curling. Acta Geotech 15:2619–2635

    Google Scholar 

  59. Masoudian MS, Hashemi MA, Tasalloti A, Marshall AM (2018) Elastic-brittle-plastic behaviour of shale reservoirs and its implications on fracture permeability variation: an analytical approach. Rock Mech Rock Eng 51(5):1565–1582

    Google Scholar 

  60. Mayer G, Klubertanz G, Croisé J (2007) Modelling of an in situ ventilation experiment in the Opalinus Clay. Phys Chem Earth Parts A/B/C 32:629–638

    Google Scholar 

  61. McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind 89(1):62–73

    Google Scholar 

  62. Mikhaltsevitch, V., Lebedev, M., & Gurevich, B. (2018, June). The effect of water saturation on the elastic properties of the wellington shale at seismic frequencies. In: 80th EAGE conference and exhibition 2018 (Vol. 2018, No. 1, pp. 1-5). European Association of Geoscientists & Engineers

  63. Millard A, Bond A, Nakama S, Zhang C, Barnichon JD, Garitte B (2013) Accounting for anisotropic effects in the prediction of the hydro-mechanical response of a ventilated tunnel in an argillaceous rock. J Rock Mech Geotech Eng 5:97–109

    Google Scholar 

  64. Miller AK, Adams DF (1980) Inelastic finite element analysis of a heterogeneous medium exhibiting temperature and moisture dependent material properties. Fibre Sci Technol 13:135–153

    Google Scholar 

  65. Minardi A, Crisci E, Ferrari A, Laloui L (2016) Anisotropic volumetric behaviour of Opalinus Clay shale upon suction variation. Géotechnique Lett 6(2):144–148

    Google Scholar 

  66. Minardi A, Ferrari A, Ewy R, Laloui L (2018) Nonlinear elastic response of partially saturated gas shales in uniaxial compression. Rock Mech Rock Eng 51(7):1967–1978

    Google Scholar 

  67. Mishra PN, Zhang Y, Bhuyan MH, Scheuermann A (2020) Anisotropy in volume change behaviour of soils during shrinkage. Acta Geotech 15:339–3414

    Google Scholar 

  68. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resourc Res 12(3):513–522

    Google Scholar 

  69. Ni H, Liu J, Guo J, Yang D, Chen Y (2020) Numerical modelling on water retention and permeability of compacted GMZ bentonite under free-swelling conditions. Int J Numer Anal Methods Geomech 44(12):1619–1633

    Google Scholar 

  70. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34:3–16

    Google Scholar 

  71. Nur A, Byerlee J (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76(26):6414–6419

    Google Scholar 

  72. Pham QT, Vales F, Malinsky L, Minh DN, Gharbi H (2007) Effects of desaturation-resaturation on mudstone. Phys Chem Earth Parts A/B/C 32(8–14):646–655

    Google Scholar 

  73. Prime N, Levasseur S, Miny L, Charlier R, Léonard A, Collin F (2015) Drying-induced shrinkage of Boom clay: an experimental investigation. Can Geotech J 53(3):396–409

    Google Scholar 

  74. Rejeb A (1999) Mechanical characterisation of the argillaceous Tournemire site (France). In: PC Jha, and RN Gupta (Eds.). Proceedings of the international conference on rock engineering techniques for site characterisation, Bangalore/India/December 6–8, 1999. Oxford

  75. Rojas E, Horta J, Pérez-Rea ML, Hernández CE (2019) A fully coupled simple model for unsaturated soils. Int J Numer Anal Methods Geomech 43(6):1143–1161

    Google Scholar 

  76. Roshan H, Ehsani S, Marjo CE, Andersen MS, Acworth RI (2015) Mechanisms of water adsorption into partially saturated fractured shales: an experimental study. Fuel 159:628–637

    Google Scholar 

  77. Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, London

    Google Scholar 

  78. Sarout J, Esteban L, Delle Piane C, Maney B, Dewhurst DN (2014) Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress. Geophys J Int 198(3):1662–1682

    Google Scholar 

  79. Sarout J, Guéguen Y (2008) Anisotropy of elastic wave velocities in deformed shales: Part 1-Experimental results. Geophysics 73(5):D75–D89

    Google Scholar 

  80. Schaefer VR, Birchmier MA (2013) Mechanisms of strength loss during wetting and drying of Pierre shale. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, France, pp. 1183–1186t

  81. Schrefler BA (1984) The finite element method in soil consolidation (with application to surface subsidence), PhD Thesis, University College of Swansea C/Ph/76/84

  82. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40(18):2423–2449

    Google Scholar 

  83. Sheng D, Sloan SW, Gens A, Smith DW (2003) Finite element formulation and algorithms for unsaturated soils Part I: Theory. Int J Numer Anal Methods Geomech 27(9):745–765

    MATH  Google Scholar 

  84. Sitarenios P, Kavvadas M (2020) A plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils. Int J Numer Anal Methods Geomech 44(4):435–454

    Google Scholar 

  85. Song X, Borja RI (2014) Mathematical framework for unsaturated flow in the finite deformation range. Int J Numer Methods Eng 14(9):658–682

    MathSciNet  MATH  Google Scholar 

  86. Song X, Borja RI (2014) Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 13(5) https://doi.org/10.2136/vzj2013.07.0131

  87. Stavropoulou E, Andò E, Tengattini A, Briffaut M, Dufour F, Atkins D, Armand G (2019) Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech 14:19–33

    Google Scholar 

  88. Thury M (2002) The characteristics of the Opalinus Clay investigated in the Mont Terri underground rock laboratory in Switzerland. Compt Rendus Phys 3(7–8):923–933

    Google Scholar 

  89. Ting TCT, Chen T (2005) Poisson’s ratio for anisotropic elastic materials can have no bounds. Q J Mech Appl Math 58:73–82

    MathSciNet  MATH  Google Scholar 

  90. Valès F, Minh DN, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207

    Google Scholar 

  91. Van Den Abeele KA, Carmeliet J, Johnson PA, Zinszner B (2002) Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity. J Geophys Res Solid Earth 107(B6):ECV-4

    Google Scholar 

  92. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  93. Vecchia GD, Romero E (2013) A fully coupled elastic-plastic hydromechanical model for compacted soils accounting for clay activity. Int J Numer Anal Methods Geomech 37(5):503–535

    Google Scholar 

  94. Vincké O, Longuemare P, Boutéca M, Deflandre JP (1998) Investigation of the poromechanical behavior of shales in the elastic domain. SPE/ISRM Eurock’98, Trondheim, Norway, Paper No. SPE/ISRM 47589

  95. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353–4366

    MATH  Google Scholar 

  96. White JA, Borja RI (2011) Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics. Comput Geosci 15:647–659

    MathSciNet  MATH  Google Scholar 

  97. Wild KM, Wymann LP, Zimmer S, Thoeny R, Amann F (2015) Water retention characteristics and state-dependent mechanical and petro-physical properties of a clay shale. Rock Mech Rock Eng 48(2):427–439

    Google Scholar 

  98. Xiao Y, Zhang Z, Wang J (2020) Granular hyperelasticity with inherent and stress-induced anisotropy. Acta Geotech 15:671–680

    Google Scholar 

  99. Xiong YL, Ye GL, Xie Y, Ye B, Zhang S, Zhang F (2019) A unified constitutive model for unsaturated soil under monotonic and cyclic loading. Acta Geotech 14:313–328

    Google Scholar 

  100. Yin Q, Liu Y, Borja RI (2021) Mechanisms of creep in shale from nanoscale to specimen scale. Comput Geotech 136:104138

    Google Scholar 

  101. Yurikov A, Lebedev M, Pervukhina M, Gurevich B (2019) Water retention effects on elastic properties of Opalinus shale. Geophysical Prospecting 67(4):984–996

    Google Scholar 

  102. Zhang B, Muraleetharan KK (2019) Implementation of a hydromechanical elastoplastic constitutive model for fully coupled dynamic analysis of unsaturated soils and its validation using centrifuge test results. Acta Geotechnica 14:347–360

    Google Scholar 

  103. Zhang ZF (2014) Relationship between anisotropy in soil hydraulic conductivity and saturation. Vadose Zone Journal 13:1–8

    Google Scholar 

  104. Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science 69:79–86

    Google Scholar 

  105. Zhang Q, Choo J, Borja RI (2019) On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media. Computer Methods in Applied Mechanics and Engineering 353:570–592

    MathSciNet  MATH  Google Scholar 

  106. Zhang Q, Fan X, Chen P, Ma T, Zeng F (2020) Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration. Engineering Geology 269:105547

    Google Scholar 

  107. Zhang Q (2020) Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks. Computers and Geotechnics 128:103812

    Google Scholar 

  108. Zhang Q, Borja RI (2021) Poroelastic coefficients for single and double porosity media. Acta Geotechnica. https://doi.org/10.1007/s11440-021-01184-y

    Article  Google Scholar 

  109. Zhao NF, Ye WM, Chen B, Chen YG, Cui YJ (2019) Modeling of the swelling-shrinkage behavior of expansive clays during wetting-drying cycles. Acta Geotechnica 14:1325–1335

    Google Scholar 

  110. Zhao Y, Borja RI (2020) A continuum framework for coupled solid deformation-fluid flow through anisotropic elastoplastic porous media. Computer Methods in Applied Mechanics and Engineering 369:113225

    MathSciNet  MATH  Google Scholar 

  111. Zhao Y, Borja RI (2021) Anisotropic elastoplastic response of double-porosity media. Computer Methods in Applied Mechanics and Engineering 380:113797

    MathSciNet  MATH  Google Scholar 

  112. Zheng L, Rutqvist J, Liu HH, Birkholzer JT, Sonnenthal E (2014) Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal. Applied Clay Science 97:24–32

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program, under Award Number DE-FG02-03ER15454. Additional funding was provided by the National Science Foundation under Award Number CMMI-1914780. The second author was supported by the Research Grants Council of Hong Kong through Project Number 27205918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Linearized system

Equations (31) and (32) are solved simultaneously by first writing them in residual form:

$$\begin{aligned}\varvec{{\mathcal {R}}}_1 &=\int _{{\mathcal {B}}}\varvec{B}^{{\mathsf {T}}}\{\varvec{\sigma }'-\psi ^wp^h\varvec{b}\} \,\mathrm{d}V- \int _{{\mathcal {B}}}\varvec{N}^{{\mathsf {T}}}\rho \varvec{g}\,\mathrm{d}V \nonumber \\&\qquad - \int _{\partial {{\mathcal {B}}}_t} \varvec{N}^{{\mathsf {T}}} \mathring{\varvec{t}} \,\mathrm{d}A \end{aligned}$$
(35)

and

$$\begin{aligned}&\varvec{{\mathcal {R}}}_2 \nonumber \\&\quad = -\int _{{\mathcal {B}}}\hat{\varvec{N}}{}^{{\mathsf {T}}}\psi ^{w}\varvec{b}:(\nabla ^s\varvec{u}^h - \nabla ^s\varvec{u}^h_n) \,\mathrm{d}V - \int _{{\mathcal {B}}}\hat{\varvec{N}}{}^{{\mathsf {T}}}c(\psi ^w-\psi ^w_n) \,\mathrm{d}V\nonumber \\&\qquad -\int _{{\mathcal {B}}}\hat{\varvec{N}}{}^{{\mathsf {T}}}\frac{1}{{\mathcal {M}}}(p^h-p^h_n) \,\mathrm{d}V+\varDelta t \int _{{\mathcal {B}}} \varvec{E}^{{\mathsf {T}}}\varvec{q} \,\mathrm{d}V \nonumber \\&\qquad + {\varDelta } t \int _{\partial {{\mathcal {B}}}_q} \hat{\varvec{N}}{}^{{\mathsf {T}}} \mathring{q}\,\mathrm{d}A .\qquad \end{aligned}$$
(36)

From Remark 2, we drop the \(\nabla p^h\cdot \varvec{q}/K_w\)-term and simply set \(\varvec{E} = \nabla \hat{\varvec{N}}\). Furthermore, since the variation of Biot tensor \(\varvec{b}\) is very small, we shall assume it to be constant in what follows.

The residuals defined above are highly nonlinear with respect to the unknown vectors \(\varvec{x}_1=\varvec{d}\) and \(\varvec{x}_2=\varvec{p}\), so a Newton–Raphson iteration scheme is chosen to solve this problem. The linearized system is defined by

$$\begin{aligned} \begin{bmatrix}\varvec{K}_{11}&{}\varvec{K}_{12}\\ \varvec{K}_{21}&{}\varvec{K}_{22}\\ \end{bmatrix} \begin{Bmatrix}\delta \varvec{x}_1\\ \delta \varvec{x}_2\end{Bmatrix} = \begin{Bmatrix}\varvec{{\mathcal {R}}}_1\\ \varvec{{\mathcal {R}}}_2\end{Bmatrix} , \end{aligned}$$
(37)

where \(\delta \varvec{x}_1=\delta \varvec{d}\) and \(\delta \varvec{x}_2=\delta \varvec{p}\) are the search directions [13]. The submatrices of the tangent operator take the following forms:

$$\begin{aligned} \varvec{K}_{11}=\frac{\partial \varvec{{\mathcal {R}}}_1}{\partial \varvec{x}_1} = \int _{{\mathcal {B}}} \varvec{B}^{{\mathsf {T}}}\varvec{C}^e\varvec{B} \,\mathrm{d}V , \end{aligned}$$
(38)

where \(\varvec{C}^e\) is the elasticity tensor in matrix form.

The coupling operators are

$$\begin{aligned}\varvec{K}_{12}&=\frac{\partial \varvec{{\mathcal {R}}}_1}{\partial \varvec{x}_2} =-\int _{{\mathcal {B}}}\varvec{B}^{{\mathsf {T}}}\varvec{\xi }\hat{\varvec{N}}\,\mathrm{d}V \nonumber \\&\qquad - \int _{{\mathcal {B}}} \varPsi \varvec{B}^{{\mathsf {T}}}\{\varvec{b}\}\hat{\varvec{N}}\,\mathrm{d}V + \int _{{\mathcal {B}}}r \varvec{N}^{{\mathsf {T}}}\varvec{g}\hat{\varvec{N}} \,\mathrm{d}V , \end{aligned}$$
(39)

where

$$\begin{aligned} \varvec{\xi }=\frac{\partial \{\varvec{\sigma }'\}}{\partial \psi ^w}\frac{\partial \psi ^w}{\partial s},\qquad \varPsi = \psi ^w-\frac{\partial \psi ^w}{\partial s}p^h,\qquad r=\frac{\partial \rho }{\partial \psi ^w}\frac{\partial \psi ^w}{\partial s}, \end{aligned}$$
(40)

and

$$\begin{aligned} \varvec{K}_{21}=\frac{\partial \varvec{{\mathcal {R}}}_2}{\partial \varvec{x}_1} = -\int _{{\mathcal {B}}}\psi ^w\hat{\varvec{N}}{}^{{\mathsf {T}}}\{\varvec{b}\}^{{\mathsf {T}}}\varvec{B} \,\mathrm{d}V . \end{aligned}$$
(41)

For fully saturated condition, \(\varvec{\xi }=\varvec{0}\), \(\varPsi =\psi ^w=1\), and \(r=0\), which gives \(\varvec{K}_{12}=\varvec{K}_{21}\). In the unsaturated range, the system is asymmetric.

The structure of (2,2) submatrix block is given by

$$\begin{aligned} \varvec{K}_{22}&=\frac{\partial \varvec{{\mathcal {R}}}_2}{\partial \varvec{x}_2} =-\varDelta t\int _{{\mathcal {B}}}\varvec{E}^{{\mathsf {T}}}\bar{\varvec{K}}\varvec{E}\,\mathrm{d}V \nonumber \\&\qquad +\varDelta t\int _{{\mathcal {B}}}\varvec{E}^{{\mathsf {T}}}\varvec{\varPhi }\hat{\varvec{N}}\,\mathrm{d}V +\int _{{\mathcal {B}}}\hat{\varvec{N}}{}^{{\mathsf {T}}}\varTheta \hat{\varvec{N}}\,\mathrm{d}V, \end{aligned}$$
(42)

where \(\bar{\varvec{K}}=\varvec{k}_\mathrm{rel} \cdot \varvec{\kappa }/\mu _w\) is the matrix of hydraulic conductivity,

$$\begin{aligned} \varvec{\varPhi }=\frac{\partial \bar{\varvec{K}}}{\partial \psi ^w}\frac{\partial \psi ^w}{\partial s}\big (\nabla p^h - \rho _w\varvec{g}\big ), \end{aligned}$$
(43)

and

$$\begin{aligned} \varTheta&= {} \varvec{b}:\nabla ^s\big (\varvec{u}^h-\varvec{u}^h_n\big )\frac{\partial \psi ^w}{\partial s} + c\frac{\partial \psi ^w}{\partial s}+\big (\psi ^w-\psi ^w_n\big )\frac{\partial c}{\partial s}\nonumber \\&\quad - {} \frac{1}{{\mathcal {M}}}+\big (p^h-p^h_n\big )\frac{\partial (1/M)}{\partial \psi ^w}\frac{\partial \psi ^w}{\partial s} . \end{aligned}$$
(44)

For fully saturated condition, \(\varvec{\varPhi }=\varvec{0}\) and \(\varTheta =-1/{{\mathcal {M}}}\), and

$$\begin{aligned} \frac{1}{{\mathcal {M}}} =\frac{\phi }{K_w}+\frac{\beta }{K_s} \end{aligned}$$
(45)

is the Biot modulus for fully saturated media.

Appendix 2: Stability of transversely isotropic elastic material

Ting and Chen [89] showed that for a transversely isotropic material with positive elastic moduli to be stable, the following inequality must be satisfied:

$$\begin{aligned} s_{55}\big [2\varDelta _2-s_{11}(s_{22}-s_{23})\big ]>0 , \end{aligned}$$
(46)

where \(s_{11}\), \(s_{22}\), \(s_{23}\) and \(s_{55}\) are components of the compliance tensor in Voigt notation and \(\varDelta _2=s_{11}s_{22}-s_{12}^2\). This inequality can be expressed with the elastic constants

$$\begin{aligned} \frac{1}{G_{12}}\Big [2\varDelta _2-\frac{1}{E_1}\Big (\frac{1}{E_2}+\frac{\nu _{23}}{E_2}\Big )\Big ]>0 , \end{aligned}$$
(47)

where

$$\begin{aligned} \varDelta _2=\frac{1}{E_1 E_2}-\Big (\frac{\nu _{12}}{E_1}\Big )^2 . \end{aligned}$$
(48)

If all elastic moduli are positive, the equations can be simplified to

$$\begin{aligned} 2(E_1-E_2{\nu ^2_{12}})-E_1(1+\nu _{23})>0 , \end{aligned}$$
(49)

which can be rearranged to give

$$\begin{aligned} 1-\nu _{23}>2 {\nu ^2_{12}} \frac{E_2}{E_1} . \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, S.C.Y., Choo, J. & Borja, R.I. Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotech. 16, 3381–3400 (2021). https://doi.org/10.1007/s11440-021-01268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01268-9

Keywords

Navigation